Plane-Sphere Comparative Geometry: An Experiment in the Third Grade of Primary School
DOI:
https://doi.org/10.31074/gyntf.2024.2.5.23Keywords:
mathematics, spherical geometry, primary schoolAbstract
The main aim of our research was to teach basic concepts of spherical geometry to elementary school children, constantly comparing the spherical concepts with those of plane geometry. Twenty-eight third-grade students participated in playful activities dealing with elements of plane geometry and spherical geometry simultaneously. We have found that it becomes completely natural for third graders to compare two different worlds of geometry. This activity is beneficial not only for introducing spherical geometry, but also for a deeper understanding of planar geometry. In addition, spherical geometry contributes to better understanding of geographical concepts and orientation on the earth-globe. The post-test results confirmed our assumption about the advantages of comparative plane-sphere geometry in lower grades. Children who were considered less gifted in the subject showed interest and activity in these classes. Our experience suggests that further research on this topic may be necessary and fruitful with a larger sample of students.
Downloads
References
Battista, M. T. & Clements, D. H. (1988). A case for a Logo-based elementary school geometry curriculum. Arithmetic Teacher, 36(3), 11–17. https://doi.org/10.5951/AT.36.3.0011
Chrappán, M. (2009). A természettudományos tantárgyi integráció. (Integrating different school subject of natural sciences) https://ofi.oh.gov.hu/en/termeszettudomanyos-tantargyi-integracio (7 April 2024) (in Hungarian)
C. Neményi, E. (2007). Geometria tananyag és a geometria tanulása az alsó tagozaton. (The geometry curriculum and learning geometry in the lower grades of the elementary school) (ELTE Tanító- és Óvóképző Főiskolai Kar. (in Hungarian)
Clements, D. H. & Sarama, J. (2011). Early childhood teacher education: the case of geometry. Journal of Mathematics Teacher Education, 14(2), 133–148. https://doi.org/10.1007/s10857-011-9173-0
Dehaene, S. (2011). The number sense: how the mind creates mathematics. Revised edition. Oxford University Press.
Farmer, G., Verdine, B., Lucca, K., Davies, T., Dempsey, R., Newcombe, N., Hirsh-Pasek, K. & Golinkoff, R. (2013). Putting the pieces together: spatial skills at age 3 predict to spatial and math performance at age 5. Paper presented at the Society for Research in Child Development, WA.
Gambini, A. (2021). Five Years of Comparison Between Euclidian Plane Geometry and Spherical Geometry in Primary Schools: An Experimental Study. European Journal of Science and Mathematics Education, 9(4), 230–243. https://doi.org/10.30935/scimath/11250
Hawes, Z., Tepylo, D. & Moss, J. (2015). Developing spatial thinking: Implications for early mathematics education. In B. Davis and Spatial Reasoning Study Group (Eds.), Spatial reasoning in the early years: Principles, assertions and speculations (pp. 29–44). Routledge.
Herendiné Kónya, E. (2003). A tanítójelöltek geometriai gondolkodásának jellegzetességei. (Characteristcs of geometric thinking of future elementary school teachers) Iskolakultúra, 13(12), 51–61. (in Hungarian)
Herendiné Kónya, E. (2004). Az alsó tagozatos geometriatanítás helyzetének elemzése. (An analysis of the present state of geometry teaching in the elementary school) In Lőrincz I. (Ed.), Apáczai-Napok 2003 – Tanulmánykötet (pp. 242–247). NYME AJK.
Kerettanterv (2020) (Mathematics and environmental knowledge framework) https://www.oktatas.hu/kozneveles/kerettantervek/2020_nat/kerettanterv_alt_isk_1_4_evf (7 April 2024) (in Hungarian)
Lénárt, I. (n.d.). Ismerkedés a gömbbel. (Getting started with the sphere) Matematika „A”, 2(25. modul). https://tanitonline.hu/uploads/1199/25-modul_tan%c3%adt%c3%b3_matA2.pdf (7 April 2024) (in Hungarian)
Lénárt, I. (2009). Sík és gömb. Összehasonlító geometriai kísérletek síkon és gömbön a Lénárt-gömb készlet segítségével. Lénárt Oktatási, Kereskedelmi és Szolgáltató Bt. (English version: Lénárt, I. (2013). Non-Euclidean Adventures on the Lénárt Sphere. Lenart Educational Research and Technology.)
Mix, K. S. & Cheng, Y. L. (2012). The relation between space and math: developmental and educational implications. In J. B. Benson (Ed.), Advances in child development and behavior (pp. 197–243). Academic Press. https://doi.org/10.1016/B978-0-12-394388-0.00006-X
NAT (2020). Magyar Közlöny 17, 328–329. (National Core Curriculum, The Official Announcements of the Hungarian Government (in Hungarian)
Piaget, J. & Inhelder, B (2004). Gyermeklélektan. (The Psychology of the Child). Osiris Kiadó. (in Hungarian)
Pintér, K. (2013). Matematika tantárgy-pedagógia. (Didactics of mathematics) Mentor(h)áló 2.0 Program” TÁMOP-4.1.2.B.2-13/1-2013-0008 projekt. http://www.jgypk.hu/mentorhalo/tananyag/Matematika_tantrgypedaggia/ (7 April 2024) (in Hungarian)
Szili, J. & Lénárt, I. (n.d.). Téglatest, kocka, gömb – téglalap, négyzet, kör. (Rectangular cuboid, cube, sphere – rectangle, square, circle) Matematika „A”, 3(40. modul). https://tanitonline.hu/uploads/1436/40-modul_tan%c3%adt%c3%b3_matA3.pdf (7 April 2024) (in Hungarian)
Szili, J. & Lénárt, I. (n.d.). Tájékozódás síkon és gömbön. (Orientation on plane and sphere) Matematika „A”, 3(42. modul). https://tanitonline.hu/uploads/1459/42-modul_tan%c3%adt%c3%b3_matA3.pdf (7 April 2024) (in Hungarian)
Szili, J. & Lénárt, I. (n. d.). Haladó és forgó mozgás, tükrözés, nagyítás, kicsinyítés. (Linear and cicular motion, reflection, homothecy) Matematika „A”, 3(43. modul). https://tanitonline.hu/uploads/1461/43-modul_tan%c3%adt%c3%b3_matA3.pdf (7 April 2024) (in Hungarian)
Tzuriel, D. & Egozi, G. (2010). Gender differences in spatial ability of young children: the effects of training and processing strategies. Child Development, 81(5), 1417–1430. https://doi.org/10.1111/j.1467-8624.2010.01482.x
Verdine, B. N., Golinkoff, R., Hirsh-Pasek, K., Newcombe, N., Filipowocz, A. T. & Chang, A. (2014). Deconstructing building blocks: preschoolers’ spatial assembly performance relates to early mathematics skills. Child Development, 85(3), 1062–1076. https://doi.org/0.1111/cdev.12165
Whiteley, W. & Mamolo, A. (2014). Optimizing through geometric reasoning supported by 3D models: visual representations of change. In A. Watson & M. Ohtani (Eds.), ICMI Study 22 on Task Design (pp. 129–140). Springer.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Author
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.