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Notes on localizing Craig’s interpolation theorem

1. Introduction and philosophical motivation

Craig’s interpolation theorem has become a central logical property that expresses a deep 
connection between the syntax and semantics of first-order logic, and has been used to 
prove other important theorems of first-order logic, such as Beth definability or Robin-
son’s joint consistency theorem. Craig’s theorem has been generalized and extended in 
several ways, and interpolation properties of general logics have been intensively studied 
in the literature ever since. Craig’s original result, in a somewhat informal way, is that 
whenever an implication φ→ψ is a tautology of first-order logic, then there is a formula 
χ such that ⊨φ→χ and ⊨χ→ψ hold, and all the non-logical predicate symbols of χ 
are both in φ and ψ. In his 2008 essay, Craig writes about the origins of his theorem:

Although I was aware of the mathematical interest of questions related to elimination 
problems in logic, my main aim, initially unfocused, was to try to use methods and results 
from logic to clarify or illuminate a topic that seems central to empiricist programs: In 
epistemology, the relationship between the external world and sense data; in philosophy 
of science, that between theoretical constructs and observed data.1 

To clarify the picture, consider a scientific theory (say, some part of physics or biology or 
the like) that is axiomatized in first-order logic. Such an axiomatization may use predicates 
that refer to theoretical constructs, and predicates that refer to observational data. To sim-
plify exposition, suppose that the axiomatization in question is finite, or what amounts to 
the same, using conjunctions, it is one formula φ. If ψ is an observational consequence 
of φ (and so ψ is expressed in the observational vocabulary of the theory) then by Craig’s 
theorem one obtains an axiomatization of the observational consequences ψ by means of 
an interpolant formula χ in which only symbols for the observational vocabulary occur.2 
In effect, Craig’s result gives logical tools to eliminate the theoretical terms. According to 
Putnam: “This had led some authors to advance the argument that, since the purpose of 
science is successful prediction, theoretical terms are in principle unnecessary.”3

  DOI: 10.54310/Elpis.2022.1.8
 1 Craig 2008, 8. 
 2 Mancosu 2008.
 3 Putman 1965.
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This issue of elimination of theoretical terms from a Carnapian reconstruction of 
science is a central topic in Hempel and Demopoulos.4 Both papers criticize logical 
reconstructions that identify the theoretical content of a scientific theory with logical 
truth, and the systemization provided by Craig’s re-axiomatization. In this paper, we 
introduce the modelwise interpolation property of a logic (not necessarily first-order), 
which states that whenever ⊨φ→ψ holds, then one can find an interpolant formula 
in every model, that is, the interpolant formula in Craig interpolation may vary from 
model to model. In order to make sense of this notion, we have to work with logics 
that are semantically defined; e.g., a notion of model should be built in the definition 
of the logic. We have three main motivations as follows.

1. Scientific theories are sometimes axiomatized by logics other than classical fir-
st-order logic, for example, modal logic is used to axiomatize relativity theory.5 
Such logics may or may not have the Craig interpolation property. If the logic 
we make use has no Craig interpolation but turns out to have the modelwise 
interpolation property, and our scientific theories are formulated in this logic 
and evaluated in a model (see the next item), then changing our background 
logic from first-order logic to this new logic still allow us to carry out arguments 
inside models similar to Craig’s.

2 There is a tension between global and local approaches and it can be argued that 
when it comes to scientific theories, global truth (in the logical reconstruction, 
the tautologies of the logic) might not be as informative as local truth (which is 
truth with respect to specific models). Unfolding this topic would lead too far, 
and we refer to Rus’s PhD thesis instead.6 We also mention that most of the cases 
when it comes to logical reconstructions of physical theories, the predictions take 
place in specific models where e.g. the real numbers and similar mathematical 
objects are available. It is a well-known consequence of the Löwenheim–Skolem 
theorems that the structure of real numbers is not axiomatizable in first-order 
logic, therefore that sort of axiomatic approach suggested by Craig might not 
be feasible, at least not directly.7

3 Finally, there is a tradition in algebraic logic to study local versions of classical 
theorems of logics, e.g. one defines the notion of local explicit definition with 
respect to weak Beth definability property.8 Studying such localized properties 

 4 Demopoulos 2008 and Hempel 1958.
 5 See Molnár 2013. For axiomatizing relativity theory see in general Madarász – Németi – Székely 2006 

and Székely 2009.
 6 David-Rus 2009.
 7 For more details, see Székely 2009.
 8 Andréka – Németi – Sain 2001, Chapter 6.
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can shed light on the connections between syntax and semantics, as well as can 
serve as dividing lines when comparing different logics.

In this paper, we focus on one main example, which is Difference logic. We show that 
while it lacks the standard Craig interpolation property, still it has the modelwise inter-
polation property. This gives us two technical applications: we show that difference logic 
has the local Beth definability property and a Robinson joint consistency type of property. 
In the last section we make a detour in modal logic and draw some further consequences.

2. A formal treatment

In order to abstractly formulate the modelwise interpolation property we have to use 
a framework for logics in which there is a built-in notion of models.9 By a logic, we 
understand a tuple =⟨F, M, ⊨⟩, where F is a set of formulas generated by a set P of 
atomic formulas using logical connectives; M is an abstract class of models; and the 
consequence relation ⊨ is a relation of the type ⊨ ⊂ M × F. We assume that there are 
two distinguished connectives: a binary → denoting implication, and a constant ⊥ 
standing for falsity. For a formula α ∈ F, Voc(α) denotes the set of atomic formulas 
occurring in α. As it is standard in logic we extend the consequence relation ⊨ to a 
relation in between (sets) of formulas: For Γ, {φ} ⊆ F we write Γ ⊨ φ if whenever 𝔐 ⊨ 
Γ for a model 𝔐 ∈ M, then 𝔐 ⊨ φ as well. 

Definition 2.1. We say that the logic  = ⟨F, M, ⊨⟩ has the modelwise interpolation 
property if for every formula φ, ψ ∈ F, if ⊨ φ → ψ, then for all models 𝔐 ∈ M there 
exists χ ∈ F with Voc(χ) ⊆ Voc(φ) ∩ Voc(ψ) such that 𝔐 ⊨ φ → χ and 𝔐 ⊨ χ → ψ.

Note that it is crucial for the definition of the modelwise interpolation property to 
have a notion of model built in the definition of the logic L, therefore the definition 
cannot be applied to purely syntactically given logical calculi.

Recall that the Craig interpolation property is the property that whenever φ, ψ ∈ F, 
if ⊨ φ → ψ, then there exists χ ∈ F with Voc(χ) ⊆ Voc(φ) ∩ Voc(ψ) such that ⊨ φ → χ 
and ⊨ χ → ψ. The modelwise interpolation property thus differs from Craig’s interpola-
tion in that the interpolant formula is “localized” i.e. it may vary from model to model.

 9  The most straightforward choice would be to rely on the Andréka – Németi – Sain (see Andréka – Gyenis 
– Németi – Sain 2022, Andréka – Németi – Sain 2001, and Hoogland 1996, 2001, or Madarász 1998) 
approach rather than the more mainstream Blok–Pigozzi (see Block¬ – Pigozzi 1989, 1991,1994 and 
Czelakowski – Pigozzi 2004) framework in which the focus is rather on the relation ⊢ between sets of 
formulas and is missing the general notion of models. However, we try to keep the formal parts as simple 
as possible, therefore we make slight simplifications in the ANS-framework.
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It is straightforward to see that Craig’s interpolation property implies the modelwise 
interpolation property: a global interpolant is an interpolant in every model. However, 
the converse is not true: we prove that first-order logic restricted to n variables has the 
modelwise interpolation property but lacks the Craig interpolation property. Further, 
to show that modelwise interpolation is not an automatic property of a logic, we show 
that Łukasiewicz’s logic does not have neither Craig’s interpolation, nor the modelwise 
interpolation. Even though our definitions so far were employed for logics in a very 
broad sense, the examples given below are all well-studied in the literature, having further 

“nice” properties such as algebraizability.

Difference logic . Difference logic is a kind of modal logic and is discussed in the 
literature.10 e.g. in Sain, Venema, Roorda, but see also Segerberg, who traces this logic 
back to von Wright. For a set P of atomic formulas, the set F is generated using the 
connectives {∧, ¬, ⊥, D}, where conjunction, negation and falsity are the usual, and D 
is a unary connective. Models are of the form 

𝔐 =⟨W,V⟩, where W≠∅ and V:P→℘(W).

For a model 𝔐 , w∈W and a formula φ one defines M,w⊩φ by

 𝔐 , w ⊮ ⊥  ⇔  (∃x ≠ u)𝔐 , x  ⊩ ϑ
 𝔐 , w ⊩ p  ⇔  w ∈ V(p )
 𝔐 , w ⊩ φ ∧ ψ  ⇔  𝔐 , w ⊩ φ and 𝔐 , w ⊩ ψ
 𝔐 , w ⊩ ¬ φ  ⇔  𝔐 , w ⊮  φ
 𝔐 , w ⊩ Dφ  ⇔  (∃ v ∈ W\{w}) 𝔐 , ⊩ φ

Finally, we define ⊨ by

𝔐 ⊨ φ  ⇔  (∀ w ∈ W)  𝔐 , w ⊩ φ

Difference logic does not have the Craig interpolation property. Let us briefly recall the 
argument. Let Eφ abbreviate φ∨Dφ. The following implication is a logical validity of 
difference logic:

⊨  (Dp  ∧  D¬ p ) → (E(r ∧  ¬ Dr) → E(¬ r ∧  D¬ r))

 10  Difference logic is studied at depth from many different aspects in Sain 1983, Segerberg 1970, de Rijke 
1993, Rooda 1991, Venema 1992.
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The reason is that in a model M and a world w, w⊩Dp∧D¬p implies that there are at 
least two other worlds not equal to w, while E(r ∧ ¬Dr) → E(¬r ∧ D¬r) expresses that if 
there is only one world satisfying r, then there must be at least two different worlds satis-
fying ¬r. The common vocabulary of the subformulas on the two side of the implication 
is empty, and it is not hard to check that neither ⊤ nor ⊥ can be global interpolant.11 
However,  has the modelwise interpolation property.

Theorem 2.2.  has the modelwise interpolation property.

Proof. Suppose ⊨  φ(p⃗,q⃗) → ψ(q⃗, r⃗ ) is a logical validity, where the formulas φ and ψ 
use the atomic formulas p⃗, q⃗ and r⃗  as denoted. We need to find an interpolant formula 
using the atomic formulas q⃗ only. Write q⃗=⟨q0, … ,qn-1⟩ and p⃗=⟨p 0,…,pm-1⟩. Two worlds, 
v , w ∈ W are said to be q⃗-equivalent (v ∼w in symbols) if for all i<n we have 

𝔐 , v ⊩ qi  ⟺  𝔐 , w ⊩ qi

Claim 2.3. If 𝔐 ,v  ⊩ φ and w∼v , then 𝔐 , w ⊩ ψ.

Proof. Assume 𝔐 , v  ⊩ φ and define a new model 𝔐 ’ = ⟨W,V’⟩ on the same set of pos-
sible worlds as follows. For a world u ∈ W let us use the notation

 v , if u=w
u’=� w, if u=v 
 u, if u≠v ,u≠w

that is, we exchange v with w but keep everything fixed. Define the new evaluation  
V’ by V’(qi )=V(qi), V’(ri )=V(ri) and

V’(p i ) = {u’:u ∈ V(p i )}.

Lemma 2.4. For any formula ϑ(p⃗,q⃗) and world u ∈ W we have

M, u ⊩ ϑ  ⟺  M’, u’ ⊩ ϑ.

Proof. Induction on the complexity of ϑ.

 11  For more details, see Conradie 2002.



108 ELPIS 2022/1-2.

– For atomic propositions qi: As V’ (qi )=V(qi), if u ≠ v and u ≠ w, then u = u’ and thus 
the statement holds. For u = v or u = w we obtain the result by assumption v ∼ w.

– For atomic propositions pi the statement follows directly from the definition of 
V’: 𝔐 , u ⊩ pi if and only if 𝔐 ’, u’ ⊩ pi.

– For the Boolean combinations the induction is straightforward.
– For formulas of the form Dϑ: Assume (inductive hypothesis) that the statement 

holds for ϑ. Then

 𝔐 , u ⊩ Dϑ  ⇔   (∃x  ≠ u)𝔐 , x ⊩ ϑ
   ⇔   (∃x ’ ≠ u)𝔐 ’, x ’ ⊩ ϑ
   ⇔   (∃x ’ ≠ u’)𝔐 ’, x ’ ⊩ ϑ
   ⇔   𝔐 ’, u’ ⊩ Dϑ

□
Applying the lemma to v  and φ we obtain 𝔐 ’, w ⊩ φ. As ⊨  φ → ψ holds we get 𝔐 ’,
w ⊩ ψ. But note that V and V’ coincide on the elements of q⃗ and r⃗ , therefore 𝔐 , u 
⊩ ψ if and only if 𝔐 , u’ ⊩ ψ. It follows 𝔐 , w ⊩ ψ completing the proof of the claim.

□
In what follows we use the notation q1 = q and  q0 = ¬ q. For v  ∈ W we write 

χv  = ⋀
i<n

qi
εi

where 

 εi = { 1 if 𝔐 ⊨ qi[v ]
  0 otherwise”

By the claim above for each v for which 𝔐 , v ⊩ φ holds, the equivalence class v / ∼ is 
a subset of {u ∈ W : 𝔐 , u ⊩ ψ}. As q⃗ is finite, there are only finite many ∼ equivalence 
classes. Let v 0,…v l be representative elements of all the different equivalence classes such 
that 𝔐 , vi ⊩ φ and write

χ = ⋁
i<l

χv i

Then 𝔐 ⊨ φ → χ and 𝔐 ⊨ χ → ψ, that is χ is a desired interpolant formula in 𝔐 .
□

Łukasiewicz’s logic £. Consider the 3-element algebra 

𝔄 = ⟨{0,1⁄2, 1}, ∧ , ∨, ¬ , →, 1⟩,
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where the operations are given by

x  ∧  y = min{x , y},  x  ∨ y = max  {x , y},
¬ x  = 1 – x , x  → y = min{1,1 – x  + y}.

Łukasiewicz’s logic £ is defined as follows. The logical connectives are the usual ∧ , ∨, ¬ , 
→, ⊤. If P is a set of propositional variables, then the set of formulas F is generated by P 
using the connectives. Write  for the absolutely free formula algebra  = ⟨F, ∧ , ∨, ¬ , 
→, ⊤⟩. The class of models is

M={h:  → 𝔄  : h is a homomorphism}.

In a model h ∈ M, h ⊨ φ holds if h(φ) = 1. The definition of logical validity is then

⊨Ł φ ↔(∀ h ∈ M)h(φ) = 1

It is easy to check via truth tables that the implication

⊨Ł p  ∧  ¬ p  → q ∨ ¬ q

holds for any propositional variables p , q ∈ P. Every formula in the empty vocab-
ulary is equivalent to either ⊤ or ¬ ⊤ (=⊥). However, in the model where both p 
and q are evaluated to 1⁄ 2 neither ⊤ not ⊥ can be an interpolant. Therefore Ł does 
not have the modelwise interpolation property, and thus it does not have the Craig 
interpolation property either.

3. Two corollaries

The local Beth property of a logic  states that every implicitly definable relation is locally 
explicitly definable, that is, the explicit definition may vary from model to model.12 To be 
more precise, let  = ⟨F, M, ⊨⟩ be a logic, write FP to denote the set of formulas of the 
logic  that are generated by the propositional letters P, that is, FP = {φ ∈ F: Voc(φ) ⊆ P}, 
and let ↔ be a distinguished binary connective. For a set of propositional letters R let 
R’ be a disjoint copy of R and for Σ ⊆ FR we write Σ’ to denote the formulas obtained 
from Σ be replacing each r ∈ R by the corresponding r’ ∈ R’. We say that Σ ⊆ FP∪R 
defines R implicitly in terms of P if Σ ∪ Σ’ ⊨ r ↔ r’ for every r ∈ R. Further, Σ defines R 

 12  The concept was introduced in Andréka – Sain – Németi 2001, Definition 6.9.
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locally explicitly in terms of P if for every model 𝔐 ⊨ Σ, for all r ∈ R there is φr ∈ FP such 
that 𝔐 ⊨ r ↔ φr. That is, the usual explicit definition may vary from model to model.

We show that the modelwise interpolation property implies the local Beth definability 
property for a wide range of logics. In what follows, we work with logics that extend 
classical propositional logic in the sense that the connectives ∧  and → are available 
and work in the usual way. The logic L is said to be consequence compact if for every 
Γ,{φ} ⊆ F, if Γ ⊨ φ, then there is a finite subset Γ0 ⊆ Γ such that Γ0 ⊨ φ.  is conjunctive 
if for any φ, ψ ∈ F we have

{ϑ: φ, ψ ⊨ ϑ} = {ϑ: φ ∧  ψ ⊨ ϑ}.

We say that L has deduction theorem if for all φ, ψ, ϑ ∈ F we have

φ, ψ ⊨ ϑ if and only if φ ⊨ ψ → ϑ.

Theorem 3.1. Suppose  is consequence compact, conjunctive, and has deduction theorem. 
If  has the modelwise interpolation property, then it has the local Beth definability property.

Proof. The proof is standard. Suppose that Σ ⊆ FP∪{r} defines r implicitly, that is

Σ ∪ Σ’ ⊨ r ↔ r’.

By consequence compactness and conjunctiveness there is a formula φ such that

φ, φ’ ⊨ r ↔ r’.

By deduction and conjunctiveness

⊨ (φ ∧  φ’) → (r ↔ r’).

For any model 𝔐 , by the modelwise interpolation property, there is an interpolant 
formula ϑ𝔐  ⊆ FP such that

𝔐 ⊨ φ ∧ r → ϑ𝔐 , and  𝔐 ⊨ ϑ𝔐  → (φ’ → r’),

hence

𝔐 ⊨ φ → (r ↔ ϑ𝔐 ).
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Using deduction, for every 𝔐 ⊨ Σ one has 𝔐 ⊨ r ↔ ϑ𝔐 , that is, Σ locally explicitly 
defines r. 

□
Corollary 3.2. Difference logic  has the local Beth definability property.

Proof. Combine Theorems 2.3 and Theorem 3.1.
□

Next, using the example of difference logic , we show that the modelwise 
interpolation property can imply interesting global properties, in our example 
below this is a weak version (see the comments after the theorem) of Robinson’s 
joint consistency theorem.

Theorem 3.3. Consider difference logic  and suppose P1 and P2 are disjoint. Assume 
Σ1 ⊆ FP1 and Σ2 ⊆ FP2 are consistent. Then Σ1 ∪ Σ2 ⊆ FP1 ∪ P2 is consistent as well.

Proof. We more or less follow the standard proof that uses global interpolation and make 
some modifications that allows us to refer to the modelwise version of interpolation. 
Recall that  has the modelwise interpolation property by Theorem 2.3.

By way of contradiction, suppose that Σ1 ∪ Σ2 is inconsistent. Then there are finite 
Γ1 ⊆ Σ1 and Γ2 ⊆ Σ2 such that for γ1 = ⋀ Γ1 and γ2 = ⋀ Γ2 we have ⊨  γ1 → ¬ γ2. By 
the modelwise interpolation property for all models 𝔐  there is a formula χ such that 
Voc(χ) ⊆ Voc(γ1) ∩ Voc(γ2) and 𝔐 ⊨ γ1 → χ and  𝔐 ⊨ χ → ¬ γ2.

Take the canonical model 𝔐  in the language P1 ∪ P2. Let χ be the interpolant 
formula in the model 𝔐 .13 As Σ1 is consistent, there is some maximal consistent set Δ1 
such that γ1 ∈ Δ1, and similarly, there is a maximal consistent set Δ2 such that γ2 ∈ Δ2. 
By the Truth Lemma14 it follows that

𝔐 , Δ1 ⊢ χ,  and   𝔐 , Δ2 ⊢ ¬  χ.

But this is a contradiction as χ is formulated in the empty language P1 ∩ P2.
□

In the general case, Robinson’s joint consistency property would be the following state-
ment:

Suppose P0 = P1 ∩ P2 and Σ0 ⊆ FP0 is a maximally consistent set of formulas. Assume 
Σ1 ⊆ FP1 and Σ2 ⊆ FP2 are consistent extensions of Σ0. Then Σ1 ∪ Σ2 ⊆ FP1∪ P2 is consistent.

 13  See de Rijke 1993, Definition 3.3.15.
 14  de Rijke 1993, Lemma 3.3.17.
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In the theorem above, we took Σ0 to be the empty set. Our statement in Theorem 3.3 
could be strengthened by requiring Σ0 to be canonical (i.e. the canonical model of 
Σ0-consistent sets exists and satisfies the Truth lemma). We do not pursue such a gen-
eralization in this paper.

4. Detour into modal logics

Ever since Craig proved his original interpolation for first-order logic, the property has 
been widely studied in modal and intermediate logics. From the semantic perspective 
the main direction was algebraic in nature via amalgamation properties of certain classes 
of modal algebras.15 We do not pursue the algebraic approach here, rather, we focus 
on the model theoretic connections. For this approach, Marx introduced interesting 
model theoretic conditions that are useful to prove or disprove whether a canonical 
modal logic has the Craig interpolation.16 Later, ten Cate proposed similar requirements 
for elementary classes.17 Continuing this track, we establish a sufficient condition for 
a class having the modelwise interpolation property. Before doing so, we recall some basic 
notions from modal logics.

The standard unimodal language is defined by the following grammar as:

p |⊤| ¬  φ|(φ ∨ ψ)| φ)

where p is a propositional letter and □ abbreviates ¬ ¬ . A set Λ of modal formulas is 
called normal modal logic, if it contains all propositional tautologies and is closed under 
modus ponens, uniform substitution and modal generalization, moreover it contains the 
axioms:

K : = □(p  → q) → (□p  → □q)
Dual : =  p  ↔ ¬ □¬ p 

Models for the language are tuples 𝔐 = ⟨ , V⟩, where  = ⟨W, R⟩ is the underlying 
frame or structure equipped with a binary relation R, and V:P→℘(W) is a valuation 
of the variables. Truth of a formula at w∈W is defined as usual, except the case for :

𝔐 , w ⊩  φ ⇔  ∃v  ∈ W s.t. Rwv   and   𝔐 , v ⊩ φ

 15  Maksimova 1979, 1991.
 16  Marx 1995, 1999.
 17  ten Cate 2004.
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We say φ is globally satisfied in 𝔐 , in symbols: 𝔐 ⊨ φ, if for all w∈W, 𝔐 , w ⊩ φ. By 
definition, φ is valid in , notation:  ⊩ φ if for all model based on  we have 𝔐 ⊩ φ. 
Let 𝔐  be a class of models,  be a class of frames. We introduce the notation:

Th(ℳ) = {φ: (∀ 𝔐 ∈ ℳ) 𝔐 ⊩ φ}
Mod (Th(ℳ)) = {𝔐 :𝔐 ⊩ Th(ℳ)}

Th( ) = {φ:(∀  ∈ )   ⊩ φ}
Mod (Th( )) = { :  ⊩ Th(F)}

Note that Th( ) is a (normal) modal logic defined in the above sense and is called the 
logic generated by . We do not recall further standard notions, such as bounded mor-
phism, generated substructure and bisimulation.18 Our key notion will be the following:

Definition 4.1. A bisimulation product of a set of frames { i:i ∈ I} is a subframe  of 
the Cartesian product ∏i  such that for each i ∈ I, the natural projection πi:  → i 
is a surjective bounded morphism.

Fact 4.2. Let H be a submodel of the product  × . Then  is a bisimulation product 
of  and  iff the domain of H is a total frame bisimulation between  and .

By a total bisimulation between  and , we mean a bisimulation whose domain 
is the universe of  and the range is the universe of . We say that a class  of frames 
is closed under bisimulation products if for all ,  ∈ , all bisimulation products of  
and  are in .

Theorem 4.3. Let  be an elementary class of frames closed under generated subframes 
and bisimulation product. Then the modal logic generated by  has the Craig inter-
polation property.19

Now we are going to state and prove its modelwise analogue. For this, we need the 
following concept:

Definition 4.4. A class  is closed under modelwise bisimulation products if for all model 
𝔐  based on  and all models , ’ ∈ Mod (Th(𝔐 )) every bisimulation products 
between  and ’ are in .

Theorem 4.5. If  is closed under modelwise bisimulation products, then the modal 
logic generated by  has the modelwise interpolation property.

 18  For more details see Blackburn – de Rijke – Venema 2001.
 19  The statement is proved in ten Cate 2004.
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Proof. Suppose  ⊨ φ → ψ, and by contradiction assume there is some model 𝔐  based 
on a frame in  such that 𝔐 ⊭ φ → θ or 𝔐 ⊭ θ → ψ, for all formula ϑ with Voc(ϑ) 
⊆ Voc(φ) ∩ Voc(ψ). Define the set

Cons(φ) = {ϑ:𝔐 ⊨ φ → ϑ, Voc(ϑ) ⊆ Voc(φ) ∩ Voc(ψ)}

Claim 4.6. There is a model + ∈ Mod (Th(𝔐 )) with a world w such that 
+, w ⊨ Cons(φ) ∪ {¬ ψ}.

Observe that every finite subset of Cons(φ) ∪ {¬ ψ} is satisfiable in Mod(Th(𝔐 )). Other-
wise there are some ϑ1,…ϑn, ∈C ons(φ) such that for all  ∈ Mod (Th(𝔐 )) we have 

 ⊨ ⋀ ϑi → ψ. Then ⋀ϑi is an interpolant in 𝔐 , contrary to the assumption. By standard 
results, there is an ultraproduct + and w such that +, w ⊨ Cons(φ) ∪ {¬ ψ}, also 
Th(𝔐 ) ⊆ Th( +), hence + ∈ Mod (Th(𝔐 )). 

Now, we define the set

Σ = {ϑ: +, w ⊩ ϑ, Voc(ϑ) ⊆ Voc(φ) ∩ Voc(ψ)}

Claim 4.7. There is a model * ∈ Mod (Th(𝔐 )) with a world v such that *, v  ⊩ Σ ∪ {φ}.

Again, every finite subset of Σ ∪ {φ} is satisfiable in Mod(Th(𝔐 )). Otherwise there are 
some ϑ1,…,ϑn ∈ Σ such that for all  ∈ Mod (Th(𝔐 )) we have  ⊨ φ → ¬ ⋀ϑi. Then 
again ⋀ϑi ∈ Cons(φ), which is contradiction as +, w ⊩ ⋀ϑi by construction and +, 
w ⊩ ¬ ⋀ϑi. Just as above, this ensures the existence of some * ∈ Mod (Th(𝔐 )) and v 
such that *, v  ⊩ Σ ∪ {φ}.

We may assume that both + and * are generated by the points w and v respectively, 
since Mod (Th(𝔐 )) is closed under generated submodels, and also, they are ℵ1-satura-
ted. Now we can finish the proof more or less following the proof in ten Cate’s work. 
We sketch the main argument. Define a binary relation Z between the elements of + 
and * as follows:

aZb  ⇔   ( +, a ⊩ ϑ  ⇔   *, b ⊩ ϑ) 

for all ϑ such that Voc(ϑ) ⊆ Voc(φ) ∩ Voc(ψ). By construction wZv, moreover, one 
can show that Z is a total bisimulation between + and *. The zig-zag conditions are 
satisfied by ℵ1-saturation, for the total bisimulation one uses the property that both 
sturctures are point generated. By  and  let us denote the underlying frames of + 
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and * respectively. By Fact 4.2 and assumption there is a bisimulation product  ∈ 
. Since the projections π1:  →  and π2:  →  are bounded morphisms, we let V(p ) 
= {u: +, π1 (u) ⊩ p } for p  ∈ Voc(ψ) and V(p ) = {u: *, π2 (u) ⊩ p } for p  ∈ Voc(φ). 
Then ⟨ , V⟩, ⟨w, v ⟩ ⊩ φ ∧  ¬ ψ, contrary to the assumption  ⊨ φ → ψ.

□
We finish by adding the following remarks: although the conditions in Theorem 4.3 

and Theorem 4.5 are quite independent, we could not find any classes where the logic 
generated by the class lacks Craig interpolation, but has the modelwise interpolation 
due to  being closed under modelwise bisimulation. In the future we would like to 
establish such results using the conditions in Theorem 4.5.

Bibliography 

Andréka Hajnal – Gyenis Zalán – Németi István – Sain Ildikó. 2022. Universal Algebraic Logic. 
Cham: Birkhauser. https://doi.org/10.1007/978-3-031-14887-3.

Andréka Hajnal – Németi István – Sain Ildikó. 2001. “Algebraic logic.” In Handbook of philoso-
phical logic Vol. 2, edited by Dov M. Gabbay – Franz Guenthner, 133–47. Dordrecht: Kluwe 
Acad. Publ. https://doi.org/10.1007/978-94-017-0452-6_3.

Blackburn, Patrick – Maarten de Rijke – Yde Venema. 2001. Modal logic. New York: Cambridge 
University Press. https://doi.org/10.1017/CBO9781107050884.

Blok, Wim – Don Pigozzi. 1989. Algebraizable logics. Providence: American Mathematical Society. 
https://doi.org/10.1090/memo/0396

Block, Wim – Don Pigozzi. 1991. “Local deduction theorems in algebraic logic.” In Algebraic 
Logic (Proc. Conf. Budapest 1988), Colloq. Math. Soc. J. Bolyai Vol. 54, edited by Andréka 
Hajnal – Donald J. Monk – Németi István, 75–109. Amsterdam: North-Holland Pub. Co.

Blok, Wim – Don Pigozzi. 1994. Abstract algebraic logic. Lecture Notes of the Summer School 
Algebraic Logic and the Methodology of Applying. Budapest.

ten Cate, Balder. 2004. “Model theory for extended modal languages.” PhD thesis, University 
of Amsterdam.

Conradie, William. 2002. “Definability and changing perspectives.” Master’s Thesis, ILLC, Uni-
versity of Amsterdam.

Craig, Willaim. 2008. “The road to two theorems of logic.” Synthese 164/3: 333–339. https://doi.
org/10.1007/s11229-008-9353-3.

Czelakowski, Janusz ¬– Don Pigozzi. 2004. “Fregean logics.” Annals of Pure and Applied Logics 
127: 17–76. https://doi.org/10.1016/j.apal.2003.11.008.

Rus, Richard David. 2009. “Explanation and Understanding Through Scientific Models.” PhD 
thesis, Ludwig-Maximilians-Universität München.

https://doi.org/10.1007/978-3-031-14887-3
https://doi.org/10.1007/978-94-017-0452-6_3
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1090/memo/0396
https://doi.org/10.1007/s11229-008-9353-3
https://doi.org/10.1007/s11229-008-9353-3
https://doi.org/10.1016/j.apal.2003.11.008


116 ELPIS 2022/1-2.

Demopoulos, William. 2008. “Some remarks on the bearing of model theory on the theory of 
theories.” Synthese 164/3: 359–383. https://doi.org/10.1007/s11229-008-9355-1.

Hempel, Carl. 1958. “The theoretician’s dilemma: A study in the logic of theory construction.” 
In Concepts, Theories, and the Mind-Body Problem, edited by Herbert Feigl – Michael Scriven 

– Grover Maxwell, 173–226. Minneapolis: University of Minneapolis.
Hoogland, Eva. 1996. “Algebraic characterizations of two Beth defnability properties.” Master’s 

thesis, University of Amsterdam.
Hoogland, Eva. 2001. “Defnability and Interpolation, model-theoretic investigations.” PhD thesis, 

ILLC, University of Amsterdam.
Madarász Judit. 1998. “Interpolation and amalgamation; pushing the limits I.” Studia Logica 

61/3: 311–345. https://doi.org/10.1023/A:1005064504044.
Madarász Judit – Németi István – Székely Gergely. 2006. “First-order logic foundation of relati-

vity theories.” In Mathematical Problems from Applied Logic II, edited by Dov M. Gabbay 
– Michael Zakharyaschev – Sergei S. Goncharov, 217–252. New York: Springer. https://doi.
org/10.1007/978-0-387-69245-6_4.

Maksimova, Larissa. 1979. “Interpolation theorems in modal logics and amalgamable varieties 
of topological Boolean algebras.” Algebra i Logika 18/5: 556–586. https://doi.org/10.1007/
BF01673502.

Maksimova, Larisa. 1991. “Amalgamation and interpolation in normal modal logic.” Studia Logica 
50: 457–471. https://doi.org/10.1007/BF00370682.

Mancosu, Paolo. 2008. “Introduction: Interpolations – essays in honor of William Craig.” Synthese 
164/3: 313–319. https://doi.org/10.1007/s11229-008-9350-6.

Marx, Maarten. 1995. “Algebraic relativization and arrow logic.” PhD thesis, ILLC, University 
of Amsterdam.

Marx, Maarten. 1995. “Interpolation in modal logic.” In Algebraic Methodology and Software 
Technology, edited by Armando M. Haeberer, 154–163. Berlin – Heidelberg: Springer. https://
doi.org/10.1007/3-540-49253-4.

Molnár Attila. 2013. “Lehetségesség a fizikában.” Elpis 7/1: 73–103. de Rijke, Maarten. 1993. 
“Extending Modal Logic.” PhD thesis, ILLC, University of Amsterdam.

Rooda, Dirk. 1991. “Resource Logics. Proof-Theoretical Investigations.” PhD thesis, ILLC, 
University of Amsterdam.

Sain Ildikó. 1988. “Is some-other-time sometimes better than sometime for proving partial cor-
rectness of programs?” Studia Logica 47/3: 279–301. https://doi.org/10.1007/BF00370557.

Segerberg, Krister. 1976. “Somewhere else and Some other time.” In Wright and Wrong: Mini-Es-
says in Honor of George Henrik von Wright on his Sixtieth Birthday, edited by Kristen Seger-
berg, 61–64. Åbo: Publications of the Group in Logic and Methodology of Real Finland, 
Åbo Akademi.

Székely Gergely. 2009. “First-Order Logic Investigation of Relativity Theory with an Emphasis 
on Accelerated Observers.” PhD thesis, Eötvös Loránd University.

Venema, Yde. 1992. “Many-dimensional Modal Logic.” PhD thesis, ILLC, University of Amsterdam.

https://doi.org/10.1007/s11229-008-9355-1
https://doi.org/10.1023/A:1005064504044
https://doi.org/10.1007/978-0-387-69245-6_4
https://doi.org/10.1007/978-0-387-69245-6_4
https://doi.org/10.1007/BF01673502
https://doi.org/10.1007/BF01673502
https://doi.org/10.1007/BF00370682
https://doi.org/10.1007/s11229-008-9350-6
https://doi.org/10.1007/3-540-49253-4
https://doi.org/10.1007/3-540-49253-4
https://doi.org/10.1007/BF00370557

