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ABSTRACT

In this paper, the modeling possibilities applicable to rolling processes were summarized, with partic-
ular reference to finite element models (FEM) and different flow-line models (FLM). The results of the
analysis suggest that the different models are suitable for the study of deformation processes during
cold rolling. Furthermore, the possibilities for the extension of the FLM model are summarized.
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1. Introduction

Rolling means the plastic deformation of a sheet between rotating rolls, the thickness of the sheet is
smaller after deformation than before it [1]. A simple geometrical drawing is shown in Fig. 1.
Because of the sheet’s constant volume, the other two geometrical dimensions should be modified.

Based on the results summarized in [2], the changes in the width can be neglected, so the relative
change in the thickness dimension should be equal to the relative change in the sheet’s length. For
the notation of directions during the calculations, the following rules can be applied, which rules are
the same as those applied in [3, 4]:

– x, RD, or 1 means the direction along the sheet’s length,
– y, TD, or 2 means the direction along the sheet’s width,
– z, ND, or 3 means the direction along the sheet’s thickness.

The relation between the rolls’ velocities can be different based on the type of the rolling process.
In the case of symmetric rolling, the velocities are equal to each other, but in the case of asymmetric
rolling, the velocities are different [1, 5]. This difference explains the difference in strain conditions:
In the case of symmetric rolling, the characteristic types of strains are normal directional ones,
but for asymmetric arrangement it is different, the shear types are typical on it [1, 3, 6, 7]. The
effect of strain in different directions, i.e., normal and shear strains can be investigated by various
measuring methods. The most well-documented and precious methods are the electron [1, 8–10]
and X-ray [11–13] based methods, which are used for determining the relative amount of differently
oriented grains. These techniques are developed by measuring the characteristic/typical texture
components [1, 4, 8, 9, 14]. By knowing the amount of these texture components, it is possible
determine the anisotropic and generally plastic-elastic properties of the deformed materials. The
applicable options are for example the CP-FEM [15–21] or VPSC [22–26] models.
There are different methods for calculating the components and the equivalent value of the strain,
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Figure 1. Applied geometry for simulations

in this study we have applied the version described in [14, 27–29]. The strain in the normal direction
can be calculated by using Eq. (1) [27]:

εn =
hi − hf
hi

, (1)

where, εn is the strain in the normal direction, h0 is the sheet’s thickness before rolling, and hf is
the sheet’s thickness after rolling.
The measurable shear can be calculated by using Eq. (2) [27]:

γ =
dx

dz
, (2)

where γ is a derivative of displacement of the sheet in the rolling direction.
The calculated shear strain contains the effect of shear and the reduction of the sheet’s thickness [27]:

εS =
2(1 − εn)2

εn(2 − εn)
γ · ln 1

1 − εn
, (3)

where, εS is the calculated value of the shear strain.
The value of equivalent strain was calculated from the previously calculated shear strain [27]:

εeq =

√
4

3

(
ln
(

1

1 − εn

))2

+
ε2S
3
, (4)

where, εeq is the equivalent strain.
The other important parameters, which can be used during the description of the deformation

processes, are the “coefficient of friction (COF)”, and the “roll gap parameter”. The friction coefficient
means the rate of the maximal slip stress and the normal pressure [30], there are many other, similar
parameters for describing this phenomenon [31–33]. On other hand, there are more parameters that
can be applied during this calculation [34, 35], but in our study, we have used only the geometrical
parameters for calculating a minimal value of the coefficient of friction [36]. The theory under
consideration is presented by Eq. (5).
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hf
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where, µmin is a calculated minimal value of the coefficient of friction.
However, in case of more precise calculations and simulations, it is necessary, to use a corrected

value of coefficient of friction; this correction is achieved by applying Eq. (6). The correction
factor expresses the effect of the neglected parameters for example roughness, the local change of the
temperature, the contact pressure, and the slip velocity between the rolls and the sheet [30].

µmod = Cf · µmin, (6)

where, µmod is the corrected value of the friction coefficient and Cf is the correction factor. The
correction factor has a value of 1.1-1.4-1.5 [20, 21, 37]. Another approximation is using a constant
0.07-0.08 value, as it is described in [3].
The last, following examined important parameter is the effect of the roll gap, which documents

not only the geometry of the sheet, but also the dimensions of the rolls is a significant factor [38].
This effect can be taken into account by using the parameter L/R based on simple geometrical
calculations, which is described in Eq. (7).

L

R
=

√
hi − hf
R

, (7)

where, L/R is the “roll gap parameter” and L is the length of the pressed surface.
During this study, we have examined the cold rolling of aluminum sheets, and the modeling options,

mainly the finite element method and the flowline model.

2. Material model

The modeling of plastic deformation during specific manufacturing processes needs a mechanical
material model for deformation. This model can be developed by different standard material exam-
inations. The most commonly used methods applied for determining the deformation stress belongs
to different value of strain, strain rate, and temperature. The examined material in this research is
Aluminum (Al), which has various stress responses for different groups of material parameters. We
examined the material about the room temperature (20-25 °C) [39, 40] and a relatively small strain
rate. It has been summarized in different literature sources [41, 42], that for these parameter sets the
effect of temperature and strain are subject of ignorance. These parameters are neglected because
the room temperature (which has been the temperature of the specimen during the tensile test) is
40% below the melting point of Al-1050 material, which reduced the value of recrystallization tem-
perature to 380-410 °C [43]. The Ramberg-Osgood material model [44, 45], which was used for the
Finite Element Simulation (FEM), was chosen from the general material model programmed in the
applied DEFORM 2D [46] FEM software by a slightly different form. The applied equation is shown
in Eq. (8), and the material parameters of the equation are the following, based on the measured
values of [37]: the elasticity modulus (E) is 69.9 GPa, the hardening coefficient (K) is 144.6 MPa
and the hardening exponent is 0.370 and these parameters were determined from the tensile test.

ε =
σ

E
+
( σ
K

)1/c
(8)
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3. Modeling approaches

There are several approaches used for the simulation of the rolling. The three main groups can
be defined by the modeling principles: simple geometrical, analytical and ones based on principles
of continuum mechanics. However, the accuracy of the geometric model is relatively low due to
the simplifications of complex processes. These models also use 2D [47] or 3D [48] approximations.
On the other hand, it is possible to improvise these models by modifying a few parameters, that
can be determined by various measurements or can be found in various literature sources. These
methods for different types of rolling (hot/cold, symmetric/asymmetric) are described among others
in [1, 14, 21, 49, 50].
The second group includes those methods, which are valid and applicable only to a small group

of general manufacturing processes. They use fewer approximations, for example; using a simple
material model by neglecting the effect of generated heat during the plastic deformation, and us-
ing a theoretical function for describing the relations between various parameters. These types of
modelling techniques however have a giant advantage compared to the third group, they have a
significantly higher simulation speed because they use explicit numerical methods, which provide the
interpretation that the required temperature and mechanical parameters can be calculated for an
arbitrary time and coordinates of the workpiece. The most commonly used examples for this group
of modeling approaches are the “flowline models (FLM)”. There are several types of FLMs that can
be used for calculating the deformation processes of forming manufacturing technologies beyond the
rolling [51–54], for example, “(non)equal-channel angular pressing ((N)ECAP)” [55–57].
The third modeling group consists of the numerical methods. The typical example is the “finite

element method (FEM), but there are many others, for example, the “upper bound method” [58, 59],
the “uniform strain field method” [54, 60], or the “finite difference method” [54, 61]. The FEM is
based on dividing the geometry into smaller parts, and the mechanical, thermodynamical, and crys-
tallographic theories can be applied to these smaller parts for individual timesteps. The calculation
is simpler for one element, but due to the large number of elements and timesteps, the calculation
takes a long time. The advantage of the FEM method is, that the mechanical and thermodynamical
material laws can be modified for individual materials. In addition, the contacts, properties, and
the applied simplifications can be defined by user in the software. The models can be extended
by crystallographic and texture calculations for determining the anisotropic and general mechanical
properties of the deformed material. Examples for applying the FEM to modeling the rolling process
can be found in literature [1, 3, 5, 49, 50, 52, 53, 62–68].

4. Flowline model

Different versions of the FLM models are based on simple continuity principles [51]. The models use
an approximating function to describe streamlines/flowlines, described by Eq. (9) [51, 52], where the
streamline means the material’s flow along a prescribed path, by examining the motion of rollgap’s
points [52].

Φ(x, z) = z

[
1 +

(
α +

(1 − α)(x− d)2

d2

)−n
]1/n

=
zs
α
, (9)

where, Φ is the streamline function, x, z are coordinate values on the sheet as defined earlier in
Fig. 1, zs is the relative position of the rolled sheet’s thickness.
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There are other important parameters, which are used by the FLM model. These parameters are
described in Eq. (10)-(12) [51].

α =
s

e
, (10)

where, s is half-thickness after the rolling, and e is the half-thickness prior rolling.

cos(θ) =
R + s− e

R
, (11)

where, θ is the press angle.

d = R sin(θ), (12)

where, d is the projected length of the pressured surface.
The following important parameters are different components of the velocity field on the sheet’s
cross-section. These velocities can be calculated by Eq. (13) and (14).

vx(x, z) = λ(x, z)
∂ Φ(x, z)

∂z
, (13)

vz(x, z) = −λ(x, z)
∂ Φ(x, z)

∂x
. (14)

where, vx and vz are the velocities of a point in directions x and z.
The calculation of the velocity values needs to have the λ(x, z) function in the form of Eq. (15),

which can be determined from the velocity boundary conditions.

λ(x, z) =
vx(x = d, z)

(α−n + 1)1/n
. (15)

where, vx(x = d, z) is the velocity at the exit point of the streamline, it can be calculated by different
methods, the used parameters during this modeling are often based on measurement [1, 15]. However,
by knowing the velocity functions, we can define the velocity gradients by Eq. (16), which can be
used for calculating the strain values by integrating them along the streamlines.

Lij =
∂vi
∂j

. (16)

where, Lij is the ij component of velocity gradient, vi is the velocity in direction i, and j is the
direction used during the derivation. The values of i and j can be x, y and z [51].
There is a modified version of the FLM [51] method, the mFLM method, which is described in

[52]. The modified streamline function is given by Eq. (17) [52].

Φ(x, z) =
z

e

[
1 +

(
s

e
+
(

1 − s

e

)(d− x

d

)2.1
)−m]1/m

, (17)

The velocity in direction x can calculated by Eq. (18) [52].

vx(x, z) = f1(x) · (1 − zs)
n + f2(x) · zns . (18)
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Figure 2. Applied geometry for FEM

The f1 and f2 functions can be determined from the boundary condition in form of the Eq. (19)-(21).

1

n+ 1
f1(x) +

1

n+ 1
f2(x) = vin ·

[
1 +

(
s

e
+
(

1 − s

e

)(d− x

d

)2.1
)−m]1/m

, (19)

f2 − f1 = α ·

e · vin ·
[

1 +

(
s

e
+
(

1 − s

e

)(d− x

d

)2.1
)−m]1/m

− f1,ref

 , (20)

f1,ref =
[
1 − e−a(x

d)
b] (e

s
vin − vin

)
+ vin. (21)

The parameters α and n can be calculated from the geometrical dimensions and technological pa-
rameters by using the results of [53].

5. Finite element simulation of rolling

The FEM method is based on separating the bodies into smaller elements and performing further
calculations on it. The rolls were modelled as rigid rotating bodies, the sheet as a plastic-elastic
material. The 3D model was simplified to a 2D plane strain geometry, by neglecting the TD dimen-
sions. The applied geometry is shown in Fig. 2, the geometrical and technological parameters are
the same as for roll tests carried out. The friction coefficient is calculated by the Eq. (5) and (6).
The effect of the heat and the strain rate were neglected as it was described in the material model.
Simplifications made in frame of the current simulations are the same as for [3, 37]. DEFORM 2D
software [46] was employed for simulation of the rolling.

6. Measurement

The deformation flow was investigated in both symmetrically and an asymmetrically rolled sheets.
The characteristic parameters for the rolling experiments are shown in Table 1.
The displacement measurement was conducted by using the method described in [3, 69]. Prior

to rolling the surface was grinded and polished, and Vickers hardness measurement was performed
on the polished TD plane. After cold rolling, the relative displacements were measured between the
points. The hardness indents before and after the rolling processes are shown in Fig. 3.
The relative displacement values are determined by the Fiji-ImageJ software package [70, 71], while

Table 1. Characteristic parameters for symmetric and asymmetric rolling tests

Parameter Symmetric rolling Asymmetric rolling
Radius of the roll, R [mm] 75 75
Initial thickness of the sheet, hi, [mm] 1.92 1.92
Sheet thickness following rolling, hf , [mm] 1.25 1.35
Angular velocity of the top roll, ωt, [rad/s] 1.1023 1.1023
Angular velocity of the bottom roll, ωb, [rad/s] 1.1023 0.7480
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(a) (b)

(c) (d)

Figure 3. Symmetrically rolled sheet before (a) and after (b) rolling, asymmetrically rolled
sheet before (c) and after (d) rolling

the extracted displacements for the symmetric and asymmetric rolling are presented in Fig. 4 and 5,
respectively.

Figure 4. The measured and calculated displacements for the symmetrically rolled sheet
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Figure 5. The measured and calculated displacements for the asymmetrically rolled sheet

7. Results

In case of symmetrically rolled sheet, the deviations for the measured three samples are significantly
larger, than the measured differences of points’ displacements. This deviation is due to the resolution
of the applied microscope and the uneven distortion of grains. However, the values calculated by
FLM, and FEM methods are comparable. The difference in results is visible in figure 4, where all
the measured and calculated results are presented.
Similarly, the results for the asymmetrically rolled sheet are presented in Fig. 5. In this case the

FLM method is not applicable, because this approach is valid only for symmetric rolling, the shear
cannot be determined by this method. The displacement value near the faster roll is similar for
both method; near the slower roll, the difference for the displacement values of different methods are
higher, (15% deviation is observed).
Results of the simulations and experimental data, presented in Fig. 4 and 5 suggest that the

measured data and the simulated counterparts by FEM and FLM are in a good correlation. It can
be concluded here that the calculation methods with the previously described set of parameters are
applicable for both symmetric and asymmetric rolling processes.

8. Summary

In this work we have examined different modeling approaches for the simulation of deformation
by cold rolling processes. It was shown that the experimentally observed deformation flow can be
successfully modelled with the Finite Element Model (FEM) and Flow Line approximation. The
advantage of later over FEM is high performance in terms of computational time. The results of
FEM and FLM are comparable and accurately reproduce the experimental evidence.
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