Investigation of materials flow during the cold-rolling process by experimental evidence and numerical approaches

János György Bátorfia,b,*, Gyula Pála,b, Purnima Chakravartya,b, Jurij Sidora

a ELTE, Faculty of Informatics, Savaria Institute of Technology
b ELTE, Faculty of Science, Doctoral School of Physics

ABSTRACT

In this paper, the modeling possibilities applicable to rolling processes were summarized, with particular reference to finite element models (FEM) and different flow-line models (FLM). The results of the analysis suggest that the different models are suitable for the study of deformation processes during cold rolling. Furthermore, the possibilities for the extension of the FLM model are summarized.

Keywords: aluminum, cold rolling, FEM, flow-line model, material model, plastic deformation

1. Introduction

Rolling means the plastic deformation of a sheet between rotating rolls, the thickness of the sheet is smaller after deformation than before it \cite{1}. A simple geometrical drawing is shown in Fig. 1.

Because of the sheet’s constant volume, the other two geometrical dimensions should be modified. Based on the results summarized in \cite{2}, the changes in the width can be neglected, so the relative change in the thickness dimension should be equal to the relative change in the sheet’s length. For the notation of directions during the calculations, the following rules can be applied, which rules are the same as those applied in \cite{3, 4}:

- \(x\), \(RD\), or 1 means the direction along the sheet’s length,
- \(y\), \(TD\), or 2 means the direction along the sheet’s width,
- \(z\), \(ND\), or 3 means the direction along the sheet’s thickness.

The relation between the rolls’ velocities can be different based on the type of the rolling process. In the case of symmetric rolling, the velocities are equal to each other, but in the case of asymmetric rolling, the velocities are different \cite{1, 5}. This difference explains the difference in strain conditions: In the case of symmetric rolling, the characteristic types of strains are normal directional ones, but for asymmetric arrangement it is different, the shear types are typical on it \cite{1, 3, 6, 7}. The effect of strain in different directions, i.e., normal and shear strains can be investigated by various measuring methods. The most well-documented and precious methods are the electron \cite{1, 8–10} and X-ray \cite{11–13} based methods, which are used for determining the relative amount of differently oriented grains. These techniques are developed by measuring the characteristic/typical texture components \cite{1, 4, 8, 9, 14}. By knowing the amount of these texture components, it is possible determine the anisotropic and generally plastic-elastic properties of the deformed materials. The applicable options are for example the CP-FEM \cite{15–21} or VPSC \cite{22–26} models.

There are different methods for calculating the components and the equivalent value of the strain,
in this study we have applied the version described in [14, 27–29]. The strain in the normal direction can be calculated by using Eq. (1) [27]:

$$\varepsilon_n = \frac{h_i - h_f}{h_i},$$ \hspace{1cm} (1)

where, ε_n is the strain in the normal direction, h_0 is the sheet’s thickness before rolling, and h_f is the sheet’s thickness after rolling.

The measurable shear can be calculated by using Eq. (2) [27]:

$$\gamma = \frac{dx}{dz},$$ \hspace{1cm} (2)

where γ is a derivative of displacement of the sheet in the rolling direction.

The calculated shear strain contains the effect of shear and the reduction of the sheet’s thickness [27]:

$$\varepsilon_S = \frac{2(1 - \varepsilon_n)^2}{\varepsilon_n(2 - \varepsilon_n)} \gamma \cdot \ln \frac{1}{1 - \varepsilon_n},$$ \hspace{1cm} (3)

where, ε_S is the calculated value of the shear strain.

The value of equivalent strain was calculated from the previously calculated shear strain [27]:

$$\varepsilon_{eq} = \sqrt{\frac{4}{3} \left(\ln \left(\frac{1}{1 - \varepsilon_n} \right) \right)^2 + \frac{\varepsilon_S^2}{3}},$$ \hspace{1cm} (4)

where, ε_{eq} is the equivalent strain.

The other important parameters, which can be used during the description of the deformation processes, are the “coefficient of friction (COF)”, and the “roll gap parameter”. The friction coefficient means the rate of the maximal slip stress and the normal pressure [30], there are many other, similar parameters for describing this phenomenon [31–33]. On other hand, there are more parameters that can be applied during this calculation [34, 35], but in our study, we have used only the geometrical parameters for calculating a minimal value of the coefficient of friction [36]. The theory under consideration is presented by Eq. (5).
\[\mu_{\text{min}} = \frac{1}{2} \sqrt{\frac{R}{h}} \ln \left(\frac{h_o}{h_f} \right) + \frac{1}{4} \sqrt{\frac{h_o-h_f}{R}} \tan^{-1} \left(\frac{h_o}{h_f} - 1 \right), \] (5)

where, \(\mu_{\text{min}} \) is a calculated minimal value of the coefficient of friction.

However, in case of more precise calculations and simulations, it is necessary, to use a corrected value of coefficient of friction; this correction is achieved by applying Eq. (6). The correction factor expresses the effect of the neglected parameters for example roughness, the local change of the temperature, the contact pressure, and the slip velocity between the rolls and the sheet [30].

\[\mu_{\text{mod}} = C_f \cdot \mu_{\text{min}}, \] (6)

where, \(\mu_{\text{mod}} \) is the corrected value of the friction coefficient and \(C_f \) is the correction factor. The correction factor has a value of 1.1-1.4-1.5 [20, 21, 37]. Another approximation is using a constant 0.07-0.08 value, as it is described in [3].

The last, following examined important parameter is the effect of the roll gap, which documents not only the geometry of the sheet, but also the dimensions of the rolls is a significant factor [38]. This effect can be taken into account by using the parameter \(L/R \) based on simple geometrical calculations, which is described in Eq. (7).

\[\frac{L}{R} = \sqrt{\frac{h_i - h_f}{R}}, \] (7)

where, \(L/R \) is the “roll gap parameter” and \(L \) is the length of the pressed surface.

During this study, we have examined the cold rolling of aluminum sheets, and the modeling options, mainly the finite element method and the flowline model.

2. Material model

The modeling of plastic deformation during specific manufacturing processes needs a mechanical material model for deformation. This model can be developed by different standard material examinations. The most commonly used methods applied for determining the deformation stress belongs to different value of strain, strain rate, and temperature. The examined material in this research is Aluminum (Al), which has various stress responses for different groups of material parameters. We examined the material about the room temperature (20-25 °C) [39, 40] and a relatively small strain rate. It has been summarized in different literature sources [41, 42], that for these parameter sets the effect of temperature and strain are subject of ignorance. These parameters are neglected because the room temperature (which has been the temperature of the specimen during the tensile test) is 40% below the melting point of Al-1050 material, which reduced the value of recrystallization temperature to 380-410 °C [43]. The Ramberg-Osgood material model [44, 45], which was used for the Finite Element Simulation (FEM), was chosen from the general material model programmed in the applied DEFORM 2D [46] FEM software by a slightly different form. The applied equation is shown in Eq. (8), and the material parameters of the equation are the following, based on the measured values of [37]: the elasticity modulus \((E) \) is 69.9 GPa, the hardening coefficient \((K) \) is 144.6 MPa and the hardening exponent is 0.370 and these parameters were determined from the tensile test.

\[\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{K} \right)^{1/c} \] (8)
3. Modeling approaches

There are several approaches used for the simulation of the rolling. The three main groups can be defined by the modeling principles: simple geometrical, analytical and ones based on principles of continuum mechanics. However, the accuracy of the geometric model is relatively low due to the simplifications of complex processes. These models also use 2D [47] or 3D [48] approximations. On the other hand, it is possible to improvise these models by modifying a few parameters, that can be determined by various measurements or can be found in various literature sources. These methods for different types of rolling (hot/cold, symmetric/asymmetric) are described among others in [1, 14, 21, 49, 50].

The second group includes those methods, which are valid and applicable only to a small group of general manufacturing processes. They use fewer approximations, for example; using a simple material model by neglecting the effect of generated heat during the plastic deformation, and using a theoretical function for describing the relations between various parameters. These types of modelling techniques however have a giant advantage compared to the third group, they have a significantly higher simulation speed because they use explicit numerical methods, which provide the interpretation that the required temperature and mechanical parameters can be calculated for an arbitrary time and coordinates of the workpiece. The most commonly used examples for this group of modeling approaches are the “flowline models (FLM)”. There are several types of FLMs that can be used for calculating the deformation processes of forming manufacturing technologies beyond the rolling [51–54], for example, “(non)equal-channel angular pressing ((N)ECAP)” [55–57].

The third modeling group consists of the numerical methods. The typical example is the “finite element method (FEM), but there are many others, for example, the “upper bound method” [58, 59], the “uniform strain field method” [54, 60], or the “finite difference method” [54, 61]. The FEM is based on dividing the geometry into smaller parts, and the mechanical, thermodynamical, and crystallographic theories can be applied to these smaller parts for individual timesteps. The calculation is simpler for one element, but due to the large number of elements and timesteps, the calculation takes a long time. The advantage of the FEM method is, that the mechanical and thermodynamical material laws can be modified for individual materials. In addition, the contacts, properties, and the applied simplifications can be defined by user in the software. The models can be extended by crystallographic and texture calculations for determining the anisotropic and general mechanical properties of the deformed material. Examples for applying the FEM to modeling the rolling process can be found in literature [1, 3, 5, 49, 50, 52, 53, 62–68].

4. Flowline model

Different versions of the FLM models are based on simple continuity principles [51]. The models use an approximating function to describe streamlines/flowlines, described by Eq. (9) [51, 52], where the streamline means the material’s flow along a prescribed path, by examining the motion of rollgap’s points [52].

\[
\Phi(x, z) = z \left[1 + \left(\alpha + \frac{(1 - \alpha)(x - d)^2}{d^2} \right)^{-n} \right]^{1/n} = \frac{z_s}{\alpha}, \tag{9}
\]

where, \(\Phi \) is the streamline function, \(x, z \) are coordinate values on the sheet as defined earlier in Fig. 1, \(z_s \) is the relative position of the rolled sheet’s thickness.
There are other important parameters, which are used by the FLM model. These parameters are described in Eq. (10)-(12) [51].

\[\alpha = \frac{s}{e}, \]
(10)

where, \(s \) is half-thickness after the rolling, and \(e \) is the half-thickness prior rolling.

\[\cos(\theta) = \frac{R + s - e}{R}, \]
(11)

where, \(\theta \) is the press angle.

\[d = R \sin(\theta), \]
(12)

where, \(d \) is the projected length of the pressured surface.

The following important parameters are different components of the velocity field on the sheet’s cross-section. These velocities can be calculated by Eq. (13) and (14).

\[v_x(x, z) = \lambda(x, z) \frac{\partial \Phi(x, z)}{\partial z}, \]
(13)

\[v_z(x, z) = -\lambda(x, z) \frac{\partial \Phi(x, z)}{\partial x}. \]
(14)

where, \(v_x \) and \(v_z \) are the velocities of a point in directions \(x \) and \(z \).

The calculation of the velocity values needs to have the \(\lambda(x, z) \) function in the form of Eq. (15), which can be determined from the velocity boundary conditions.

\[\lambda(x, z) = \frac{v_x(x = d, z)}{(\alpha^{-n} + 1)^{1/n}}. \]
(15)

where, \(v_x(x = d, z) \) is the velocity at the exit point of the streamline, it can be calculated by different methods, the used parameters during this modeling are often based on measurement [1, 15]. However, by knowing the velocity functions, we can define the velocity gradients by Eq. (16), which can be used for calculating the strain values by integrating them along the streamlines.

\[L_{ij} = \frac{\partial v_i}{\partial j}. \]
(16)

where, \(L_{ij} \) is the \(ij \) component of velocity gradient, \(v_i \) is the velocity in direction \(i \), and \(j \) is the direction used during the derivation. The values of \(i \) and \(j \) can be \(x, y \) and \(z \) [51].

There is a modified version of the FLM [51] method, the mFLM method, which is described in [52]. The modified streamline function is given by Eq. (17) [52].

\[\Phi(x, z) = \frac{z}{e} \left[1 + \left(\frac{s}{e} + \left(1 - \frac{s}{e} \right) \left(\frac{d - x}{d} \right)^{2.1} \right)^{-m} \right]^{1/m}, \]
(17)

The velocity in direction \(x \) can calculated by Eq. (18) [52].

\[v_x(x, z) = f_1(x) \cdot (1 - z_s)^n + f_2(x) \cdot z_s^n. \]
(18)
The f_1 and f_2 functions can be determined from the boundary condition in form of the Eq. (19)-(21).

\[
\frac{1}{n+1}f_1(x) + \frac{1}{n+1}f_2(x) = v_{in} \cdot \left[1 + \left(\frac{s}{e} + \left(1 - \frac{s}{e} \right) \left(\frac{d - x}{d} \right)^{2.1} \right) \right]^{-m/n},
\]

\[
f_2 - f_1 = \alpha \cdot \left\{ e \cdot v_{in} \cdot \left[1 + \left(\frac{s}{e} + \left(1 - \frac{s}{e} \right) \left(\frac{d - x}{d} \right)^{2.1} \right) \right]^{1/m} - f_{1,ref} \right\},
\]

\[
f_{1,ref} = \left[1 - e^{-a(\frac{x}{d})^b} \right] \left(\frac{e}{s} v_{in} - v_{in} \right) + v_{in}.
\]

The parameters α and n can be calculated from the geometrical dimensions and technological parameters by using the results of [53].

5. Finite element simulation of rolling

The FEM method is based on separating the bodies into smaller elements and performing further calculations on it. The rolls were modelled as rigid rotating bodies, the sheet as a plastic-elastic material. The 3D model was simplified to a 2D plane strain geometry, by neglecting the TD dimensions. The applied geometry is shown in Fig. 2, the geometrical and technological parameters are the same as for roll tests carried out. The friction coefficient is calculated by the Eq. (5) and (6). The effect of the heat and the strain rate were neglected as it was described in the material model. Simplifications made in frame of the current simulations are the same as for [3, 37]. DEFORM 2D software [46] was employed for simulation of the rolling.

6. Measurement

The deformation flow was investigated in both symmetrically and an asymmetrically rolled sheets. The characteristic parameters for the rolling experiments are shown in Table 1.

The displacement measurement was conducted by using the method described in [3, 69]. Prior to rolling the surface was grinded and polished, and Vickers hardness measurement was performed on the polished TD plane. After cold rolling, the relative displacements were measured between the points. The hardness indents before and after the rolling processes are shown in Fig. 3.

The relative displacement values are determined by the Fiji-ImageJ software package [70, 71], while

Table 1. Characteristic parameters for symmetric and asymmetric rolling tests

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symmetric rolling</th>
<th>Asymmetric rolling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius of the roll, R [mm]</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Initial thickness of the sheet, h_i, [mm]</td>
<td>1.92</td>
<td>1.92</td>
</tr>
<tr>
<td>Sheet thickness following rolling, h_{f_i} [mm]</td>
<td>1.25</td>
<td>1.35</td>
</tr>
<tr>
<td>Angular velocity of the top roll, ω_t, [rad/s]</td>
<td>1.1023</td>
<td>1.1023</td>
</tr>
<tr>
<td>Angular velocity of the bottom roll, ω_b, [rad/s]</td>
<td>1.1023</td>
<td>0.7480</td>
</tr>
</tbody>
</table>
Figure 3. Symmetrically rolled sheet before (a) and after (b) rolling, asymmetrically rolled sheet before (c) and after (d) rolling

the extracted displacements for the symmetric and asymmetric rolling are presented in Fig. 4 and 5, respectively.

Figure 4. The measured and calculated displacements for the symmetrically rolled sheet
7. Results
In case of symmetrically rolled sheet, the deviations for the measured three samples are significantly larger, than the measured differences of points’ displacements. This deviation is due to the resolution of the applied microscope and the uneven distortion of grains. However, the values calculated by FLM, and FEM methods are comparable. The difference in results is visible in figure 4, where all the measured and calculated results are presented.

Similarly, the results for the asymmetrically rolled sheet are presented in Fig. 5. In this case the FLM method is not applicable, because this approach is valid only for symmetric rolling, the shear cannot be determined by this method. The displacement value near the faster roll is similar for both method; near the slower roll, the difference for the displacement values of different methods are higher, (15% deviation is observed).

Results of the simulations and experimental data, presented in Fig. 4 and 5 suggest that the measured data and the simulated counterparts by FEM and FLM are in a good correlation. It can be concluded here that the calculation methods with the previously described set of parameters are applicable for both symmetric and asymmetric rolling processes.

8. Summary
In this work we have examined different modeling approaches for the simulation of deformation by cold rolling processes. It was shown that the experimentally observed deformation flow can be successfully modelled with the Finite Element Model (FEM) and Flow Line approximation. The advantage of later over FEM is high performance in terms of computational time. The results of FEM and FLM are comparable and accurately reproduce the experimental evidence.

9. Acknowledgement
Project no. TKP2021-NVA-29 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

10. References

crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale, Computational Materials Science 158, 2019, pp. 420–478. CrossRef

