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Abstract. Over the last few years, skin segmentation has been widely applied in diverse aspects of 
computer vision and biometric applications including face detection, face tracking, and face/hand-
gesture recognition systems. Due to its importance, we observed a reawakened interest in developing 
skin segmentation approaches. In this paper, we offer a comparison between five major supervised 
learning algorithms for skin segmentation based on the color of individual pixels in images. The 
algorithms involved in this comparison are: Support Vector Machines (SVM), K-Nearest-Neighbors 
(KNN), Naive Bayes (NB), Decision Tree (DT), and Logistic Regression (LR). Various scenarios of data 
pre-processing are proposed including a conversion from RGB into YCbCr color space as well as 
duplicated records dismissal. Using YCbCr representation gave a better performance in skin/non-skin 
classification. Despite the settled comparison criteria, KNN was found to be the most desirable model 
that provides a stable performance overall the several experiments conducted. 

Keywords: Supervised learning methods, Pixel-based skin segmentation, RGB color space, YCbCr 
color space. 

1. Introduction 

Skin segmentation is an essential topic that aims at segmenting regions in an image which refer to 
skin for further processing. It is broadly used in diverse aspects of computer vision and biometric 
applications, including face detection, face tracking, and face/hand-gesture recognition systems. 
Segmentation methods can be pixel-based where only individual pixels are examined without 
considering neighborhood pixels or region-based. Various image attributes can be used for skin 
segmentation, one of these to consider is color. Indeed, by investigating the skin dataset which is 
collected by a random sampling of RGB values of face images of various age groups (young, middle, 
and old), community groups (white, black, and Asian), and genders, we found that skin color can 
be solely applied to identify skin regions from its neighborhoods for a given image. Among the 
total amount of available examples, roughly 0.02% were perceived common amid skin and non-
skin pixels. That means that color is a distinctive characteristic of skin, which will result in very 
high segmentation accuracy if applied judiciously. 

To address this issue, we can adopt different approaches. For instance, due to the small region of 
the intersection between skin and non-skin in color space, it is conceivable to think of deriving 
mathematical formulas for both regions, then substituting RGB values with formal equations. 
Thereby, the categorization of skin and non-skin pixels would be simple, however, due to the 
complex relationship between RGB values, it might be impossible to represent skin and non-skin 
pixels by explicit formulas. Even though mathematical relations sound to be simpler, we observe a 
similar situation when transforming RGB values into YCbCr color space. Considering a novel 
transformation for this situation is worth to try. However, in this paper, we consider another 
approach where we employ machine learning (ML) or more precisely supervised learning methods 
(SL). As each SL algorithm possesses pros and cons and that the performance of SL algorithms 
depends on the concerned problem, we aim to examine the performance of five major SL 
algorithms for skin segmentation. 

The rest of the paper is structured as follows. In Section 2, a decent review of five major SL 
methods, color spaces as well as related works are presented. Afterward, the dataset is explored 
extensively via illustrative graphics in the first part of Section 3. Then training the models for 
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various cases are handled in the second part of Section 3 alongside the specification of the hardware 
and runtime environment used for the conducted experiments. Evaluation metrics and achieved 
results are discussed with graphics and comparative tables in Section 4. Last, but not least, in 
Section 5 we conclude the paper by suggesting possible future works. 

2. Background 

Machine learning (ML) [1] is a form of artificial intelligence that enables a system to learn from data 
rather than through explicit programming. As described in Figure 1, ML can be divided into three 
subgroups: supervised learning (SL), unsupervised learning (UL), and reinforcement learning (RL). 
In SL methods, both data and its desired label are used as input during the training process, which 
will allow the machine to learn from the data and produce a model. However, in UL methods where 
no labels are provided, an algorithm is applied to extract to the similarity among input data, regroup 
them inside a group and extract the clusters to efficiently classify new data. Other possible 
applications of UL would be to study the density estimation of input data which is diffused in latent 
space. The last type of ML is reinforcement learning, RL is a more advanced ML that allows an 
agent to learn in interactive conditions by trial and failure using feedback of its actions and 
experiences. 

 

Figure 1: Types of ML 

 

In this paper, we are considering only a subset of SL methods. The subset contains five 
classification techniques: Support Vector Machines, K-Nearest-Neighbors, Naive Bayes, Decision 
Tree, and Logistic Regression. As it is important to understand the methods that we will use during 
our experiments, a brief review of the methods is given in the next subsection. 

2.1.  Supervised Learning Methods 

2.1.1.  Support Vector Machine 

Support Vector Machine (SVM) [2][3] is a SL algorithm proposed in the 1990s and used mainly for 
pattern recognition, and more often for classification problems. As described in Figure 2, a linear 
SVM attempts to divide a given dataset into two separate classes by finding the best hyper-plane. 
A hyperplane could be interpreted as a line that linearly separates and classifies a set of data in case, 
we are dealing with a dataset with only two features. The further away the data points are from the 
hyper-plane, the more reliable and accurate the model will be. We therefore want our data points 
to be as far away from the hyper-plane as possible, but still on the correct side of the hyper-plane. 
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Support vectors (instances with green color in Figure 2) are the closest elements to the hyper-plane 
and the most important data points of a dataset. Excluding support vectors would change the 
position of the dividing hyper-plane and reduce the chance of correctly classifying new data. If no 
data points are linearly separated, they are projected into a higher dimension. In 2D the hyper-plane 
was a line, therefore in 3D the hyper-plane becomes a surface. The mapping of data into a higher 
dimension is known as kernelling. [5] 

 

Figure 2: Linear SVM classifier with a hyper-plane 

2.1.2.  K-nearest Neighbors 

K-nearest neighbors (KNN) is a lazy learning algorithm [3], which is often used for classification 
tasks. It is one of the easiest classification algorithms to understand. Despite its simplicity, it can 
still deliver very competitive results. KNN is based on similarity measurements between dataset 
instances, where K is a critical hyper-parameter for this algorithm, indicating how many nearest 
neighbors we should consider for the classification of a new instance. 

 

Figure 3: An Example of KNN Algorithm where K=5 

For example, if we have two classes: squares and triangles (as described in Figure 3) and we fix 
K=5. With a new instance (circle) and based on the K parameter, the circle will be classified as a 
square, because the majority of its neighbors (in this case 3 of 5) belong to the same class. This 
means that the new instance is more likely to be a square than a triangle. 

2.1.3.  Naive Bayes  

Naive Bayes (NB) [3][4] is a classification algorithm for binary (two-class) and multi-class 
classification problems that uses the Bayes’ theorem. Bayes’ theorem provides a way that we can 
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calculate the probability of a piece of data belonging to a given class, given our prior knowledge. 
Bayes’ Theorem is stated as: 

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦) × 𝑃(𝑦)

𝑃(𝑋)
 (1) 

Where 𝑃(𝑦) is the prior probability of 𝑦, 𝑃(𝑋) is the evidence of 𝑋, 𝑃(𝑦|𝑋) is the probability of 

a class given the provided data, 𝑦 is the class label, and 𝑋 is a dependent feature vector of size 𝑁 
where: 

𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁) (2) 

The technique is the easiest to understand when described using binary or categorical input values. 
It is called Naive Bayes because the calculation of the probabilities for each hypothesis are simplified 
to make their calculation tractable. Rather than attempting to calculate the values of each attribute 

value 𝑃(𝑥1, 𝑥2, 𝑥3|𝑦), they are assumed to be conditionally independent given the target value and 

calculated as 𝑃(𝑥1|𝑦) × 𝑃(𝑥2|𝑦), and so on. 

2.1.4.  Decision Tree  

A decision tree (DT) [3] has a structure that looks like a flowchart graph where each inner node 
has a threshold-based test for a specific feature, each branch represents the outcome of the test, 
while leaf nodes represent class labels. The entire path starting from root until reaching the leaf 
represents classification rules. Tree-based learning algorithms are considered to be one of the best 
and mostly used supervised learning methods as they offer models that are highly accurate, stable 
and easily interpreted compared with black-box models such as neural nets as they are very close 
to human logic. 

2.1.5.  Logistic Regression 

Logistic Regression (LR) [6] is mainly used for binary classification problems, LR is a predictive 
analysis algorithm based on a linear regression model which uses a complex cost function. The cost 

function used for LR is called Sigmoid function 𝜎, which is known as the logistic function, hence 

the name of logistic regression. 𝜎 is used to map predicted values (class labels) to probabilities, it 
means that given any real number, applying the sigmoid function on it will give a new value between 
[0...1]. The sigmoid function is defined as the following: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (3) 

Such a classifier uses a decision boundary. A decision boundary in case of LR for binary 
classification problems is a fixed threshold value. Based on the threshold value, LR algorithm gives 

a class label to the probabilities calculated with 𝜎. For Example, if we have 2 classes that has 0 and 

1 as labels, a threshold 𝜑, and a new instance 𝑑, we give a class label 𝑦 to 𝑑 by using the following 
rules: 

𝑦𝑑 = {
0, 𝜎(𝑑) < 𝜑

1, 𝜎(𝑑) ≥ 𝜑
 (4) 
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2.2. Related Works 

Many researchers have addressed the problem of skin segmentation in their studies. Each providing 
different algorithms and aspects to deal with the problem. Some of them focused on color models 
to improve skin detection accuracy, whereas others argued it is not related to color model selection. 
For example, in [7][8][9][10] they adopted the RGB or normalized RGB color models for skin color 
modeling. Whereas YUV was selected in [11]. YCbCr which is adopted in our study was used also 
used in [12] and [13]. In [14], they conducted a comparative study between the color spaces 
(Normalized RGB, YCbCr, Fleck HS, CIE Lab, and HSV) for skin detection. In [15], the authors 
argued that color space does not contribute to skin segmentation accuracy. They tried to prove this 
fact in their comparison between RGB, YCbCr, and HSV color spaces. They explained that an 
optimal skin model can be achieved for each color space. 

Apart from color spaces, diverse methodologies are present in literature for skin segmentation. Some 
methods rely on statistics and probability concepts, such as probability distribution functions, 
distance-based methods, and look-up tables. However, an attempt to build a skin Gaussian model 
with CgCr color space was studied in [16]. In [17], the authors used look-up tables of skin color 
probabilities, where mathematical calculations do not take place in the skin detection process, so 
they perform much faster than other methods. On the other hand, distance-based approaches need 
to calculate distance equations for each pixel in an image to classify pixels into skin and non-skin. 
This makes execution time drastically higher. Such a method was adopted by [18]. 

Other methods involve ML (similar to our paper), where the model is trained on the skin 
segmentation dataset and then tries to classify new pixels into skin and non-skin. For instance, 
SVM and convolutional neural networks (CNN) were adopted to detect skin regions in [20] and 
[19], respectively. 

As a result, in this paper, we are considering the usage of various color spaces (RGB, YCbCr, and 
CbCr) alongside SL methods (previously described in Section 2.2.) for the classification of skin 
segmentation dataset [21]. 

2.3. Color Spaces for Skin Segmentation 

Color is not an intrinsic property of objects, but a perception of another property which is an 
object’s interaction with light photons. An object with red color emits only red wavelengths with 
different quantities, whether it is self-emitting or reflecting light photons. The perception of the 
emitted photons from objects is what is defined as color. The receptors in the eye send signals to 
the brain that are respective to the received wavelengths (chrominance) and their quantities 
(intensity of color).  

A good analogy would be the perception of an object mass by its weight. An object with a mass of 
1 Kilogram (real property) weighing 10 Newton (perception) when situated in the earth’s 
gravitational field G, weighs less in the moon’s gravitational field instead. Again, this is analogous 
to exposing an object to different lighting conditions which are perceived as having different colors. 
Consequently, careful consideration should be accounted for when dealing with color. As various 
color models were invented to quantize color with numerical values, each of them has different 
ways of describing colors. The following subsections are dedicated to the color spaces used in our 
paper. 
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2.3.1.  RGB 

In RGB, color is defined by three primary colors (three values) Red, Green, and Blue. Each 
combination of these values gives a different color. The RGB model might be the simplest to 
represent color, thus it is suitable for technical applications, however, it has a major drawback that 
its R, G, and B values are highly correlated. They collectively carry the intensity (luminance) and 
color (chrominance) information. This behavior is not perceptual hence not preferred in image 
classification applications. 

2.3.2.  YCbCr 

YCbCr is one of the models that separates luminance and chrominance information. The Y 
component carries the luminance information, whereas the Cb and Cr together carry the 
chrominance information. The conversion from RGB to YCbCr is done by Equations 5, 6, and 7 
described below. 

 

𝑌 = 𝑅
77

256
+ 𝐺

150

256
+ 𝐵

29

256
 (5) 

𝐶𝑏 = 𝐵 − 𝑌 (6) 

𝐶𝑟 = 𝑅 − 𝑌 (7) 

 

Many skin segmentation articles used this color space, due to the separation between color and 
intensity information as well as its simple transformation from RGB. 

3. Experiments 

The goal of this study is to compare the performance of five major SL models for pixel-based skin 
segmentation, evaluate the effect of using different color spaces on the performance of each model 
and assess the effect of duplicated records on the results. To achieve this, RGB and YCbCr color 
spaces were adopted and different thresholding and ranking evaluation metrics were used to settle 
the comparison. 

3.1. Dataset Specifications 

The dataset is taken from the UCI machine learning repository. Skin segmentation dataset [21] has 
a sample size of 245057 out of which 50859 (21%) are skin samples, and 194198 (79%) are non-skin 
samples. Each sample comprises RGB values of a pixel taken randomly from a human face image 
associated with a binary label referring to either skin (1) or non-skin (0). Face images of various age 
groups (young, middle, and old), race groups (white, black, and Asian), and genders obtained from 
FERET and PAL databases were involved in forming the dataset. The dataset includes duplicated 
records with 51444 unique ones (28% skin and 72% non-skin). Only 11 distinct RGB tuples out of 
51444 refer to both skin and non-skin at the same time. 
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3.2. Data Preprocessing 

Having a small region of overlap between skin and non-skin implies the dismissal of redone records 
outwardly influencing the classification performance. First, the RGB values were turned into 
YCbCr, then both were visualized for two cases, with and without duplicates. Figure 4 shows the 
consequence of converting RGB values into YCbCr for both skin and non-skin pixels, on the left 
with duplicates, and on the right without duplicates. We can see that for Cb, and Cr values are 
focused on narrower bands than the other attributes. Additionally, removing duplicated records 
increases the data spread over a wider range which might be significant for some ML algorithms. 

 

Figure 4: Density Plots of RGB And YCbCr Values of Skin and Non-skin Pixels 

From Figure 5 and Figure 6, we can perceive that in YCbCr skin and non-skin values are less 
overlapping concerning Cb and Cr values that hold the chrominance feature (color) while in R, G, 
B, and Y there is no clear separation. However, considering only Cb and Cr, the overlapping 
happens at 2430 distinct tuples (instead of 11). So, disregarding the Y component will certainly 
increase the prediction error. This proves the fact that luminance (intensity) is also an important 
feature of skin and should not be disregarded if optimal performance is required. To confirm this, 
the experiment was repeated on different combinations of features including RGB, YCbCr, and 
CbCr color spaces. Also, the effect of eliminating duplicates was examined by experimenting on 
classifiers' performances with and without duplicates.  

 

Figure 5: Density Plots of RGB Values of Skin and Non-skin Pixels 
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Figure 6: Density Plots of YCbCr Values of Skin and Non-skin Pixels 

Figure 7 and Figure 8 show pair-plots of six attributes R, G, B, Y, Cb, and Cr with and without 
duplicated samples, respectively. The upper right triangle exhibits scatter plots of the actual data, 
while the lower triangle has 2D probability density plots. Again, the separation of Cb and Cr is more 
obvious in these figures. 

       

       

Figure 7: Pair-plots of RGB and YCbCr Values of Skin (in orange) and Non-skin (in green) Pixels Including 
Duplicates 

 



Supervised Learning Methods for Skin Segmentation Based on Pixel Color Classification 48 

Central-European Journal of New Technologies in Research, Education and Practice 
Volume 3, Number 1, 2021 

       

       

Figure 8: Pair-plots of RGB and YCbCr Values of Skin (in orange) and Non-skin (in green) Pixels Without 
Including Duplicates 

3.3. Hardware and Runtime Environment 

The experiments were conducted using HP Pavilion 14-ce1003ne Laptop under the hardware and 
runtime environment (RTE) described in Table 1. 

Specification Description 

Processor 
Intel® Core™ i5-8265U (1.6 GHz base frequency, up to 3.9 GHz with Intel® 

Turbo Boost Technology, 6 MB cache, 4 cores) 

Memory 16 GB DDR4-2400 SDRAM (1 x 16 GB) 

Storage Crucial MX500 1TB 3D NAND SATA 2.5-inch 7mm SSD 

Video Graphics NVIDIA® GeForce® MX150 (2 GB GDDR5 dedicated) 

Operating System Windows 10 Home 64 

RTE  Spyder IDE (Anaconda3) - Python 3.7.6 
 

Table 1: Hardware and Software Environment Specifications 

3.4. ML Training Configuration 

For our comparison, we used known SL methods (SVM, KNN, NB, DT, and LR). The 
implementation of these SL methods is publicly available and can be directly imported from the 
sklearn library [22]. The details and parameter setting of each classifier is given in Table 2. 
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Classifier Algorithm used Parameters 

SVM sklearn.svm.LinearSVC loss=squared_hinge C=1 

KNN sklearn.neighbors.KNeighborsClassifier n_neighbors=5 p=2 

NB sklearn.naive_bayes.GaussianNB var_smoothing=1e-9 

DT sklearn.tree.DecisonTreeClassifier criterion=gini 

LR sklearn.linear_model.LogisticRegression penalty=l2 
 

Table 2: Parameters Settings of The Classifiers Used for The Experiments 

 

For SVM, and more specifically Linear SVC (Support Vector Classifier), C is used for 
regularization, which describes a squared l2 penalty, while the squared hinge is used as a loss 
function. In KNN, K=5 with equal weights for neighbors and the Euclidean norm to measure the 
distance (p=2). For DT, the Gini impurity criterion was selected to measure the quality of a split. 
To train and evaluate SL models, the K-fold cross-validation technique is used. It is commonly 
applied when the sample size of the dataset is small, and to give more realistic results overall. It 
involves randomly splitting the dataset into K groups (K=5 in our case), keeping the same data 
distribution among classes inside each group. Training and evaluating the model happens K times 
by taking each group as testing data at a time while preserving all the others as training data. 
Eventually, scores obtained from the K trials are used to evaluate the model skill. 

4. Experimental Results 

4.1.  Evaluation Metrics 

After training the models, evaluation metrics are employed to compare SL methods. As our dataset 
is imbalanced, the use of common metrics can lead to a sub-optimal classification and might 
produce misleading conclusions, since these measures are insensitive to skewed domains [23]. Due 
to this fact, various metrics were selected to ensure a more realistic comparison. The confusion 
matrix is first presented as many other metrics can be extracted from it. 

 

 Predicted as Positive Predicted as Negative 

Actually Positive True Positives (TP) False Negatives (FN) 

Actually Negative False Positives (FP) True Negatives (TN) 
 

Table 3: Confusion Matrix 

 

For a binary classification problem, the confusion matrix has 4 entries (as described in Table 3). 
The diagonal holds the correct predictions, namely true positives (TP) and true negatives (TN), 
whereas false positives (FP) and false negatives (FN) are off the diagonal, they refer to the wrong 
predictions made by a classifier. From the confusion matrix, we can extract the classification 
accuracy, precision, recall, and F1-score which are illustrated in Table 4. 
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Metric Definition 

Accuracy (ACC) (𝑇𝑃 + 𝑇𝑁) ( 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)⁄  

Precision (P) 𝑇𝑃  (𝑇𝑃 + 𝐹𝑃)⁄  

Recall (R) 𝑇𝑃  (𝑇𝑃 + 𝐹𝑁)⁄  

F1-Score (F1) 𝑃 × 𝑅  (𝑃 + 𝑅)⁄  
 

Table 4: Binary classification metrics extracted from the confusion matrix 

The metrics mentioned so far are known as threshold metrics; they are concerned about quantifying 
the error in prediction. However, the ones discussed now are relevant to class separation; they are 
called ranking metrics. ROC-AUC (Receiver Operating Characteristic – Area Under Curve) is the 
most used metric in this regard, it is defined as the area under the curve having False Positive Rate 
(FPR) on the x-axis, and True Positive Rate (TPR, also known as recall) on the y-axis. TPR and 
FPR are defined by Equations 8 and 9, respectively.  

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (8) 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

 

The ROC curve is generated by diversifying the discrimination threshold of the model, calculating 
TPR and FPR for each case, and connecting the resulting points. The closer the model to the 
upper-left corner, the larger ROC-AUC, and the better classification will be. ROC-AUC can give 
confident results, in general. Though, for a severely imbalanced dataset it might be optimistic, 
especially if the minority class records are few. PR-AUC (Precision-Recall – Area Under 
Curve) focuses on the minority class, hence gives a better evaluation in our case. Like ROC-AUC, 
the PR curve is formed by connecting the points having precision on the y-axis versus recall on the 
x-axis for different thresholds. The perfect classifier resides at the upper-right corner (Figure 9). 

 

Figure 9: ROC and PR curves [24] 

4.2.  Results 

Experimental results on skin segmentation dataset revealed that in most of the cases and despite 
the parameters and the metrics used, KNN outperformed other SL methods. 



TAAN Ahmad, FAROU Zakarya  51 

Central-European Journal of New Technologies in Research, Education and Practice 
Volume 3, Number 1, 2021 

Table 5 shows the confusion matrix entries of the results for all the experiments performed. From 
these parameters, two threshold metrics (Accuracy and F1-score) were derived (and, if needed, 
others can be calculated for further comparison). Two ranking metrics (ROC-AUC and PR-AUC) 
were generated by diversifying the discrimination threshold. These four metrics are presented in 
Table 6 and depicted graphically in Figure 10. The best values (higher true predictions marked with 
“+” and lower false predictions marked with “-” for the confusion matrix entries) of each metric 
in both tables (Table 5 and Table 6) are highlighted in bold for the six cases of different color 
spaces and with/without duplicates. 

The confusion matrix entries in Table 5 suggest that KNN and DT are the best in classifying skin 
and non-skin pixels. However, a closer look tells that KNN focuses on the minority class (i.e., TP 
and FN are actual skin pixels) whereas DT on the majority (i.e., TN and FP are actual non-skin 
pixels). In other words, KNN is more useful in identifying skin pixels while DT is better in detecting 
non-skin pixels. This is precisely the definition of the recall metric for each class. Therefore, Table 
6 reveals that DT only has one occasion where it outperforms the other SL methods with an F1-
score of 95.94% in the case of CbCr color space with duplicates. Furthermore, KNN still has the 
best overall F1-score of 98.49% concerning the case of YCbCr with duplicates. We conclude that 
the direct usage of confusion matrix entries is misleading in finding the best classifier. 

 

Model 
 

With duplicates Without duplicates Color 
space TP FP TN FN TP FP TN FN 

SVC 16292 7422 186776 34567 751 1623 35167 13903 

RGB 

KNN  49749+ 908 193290  1110-  14362+ 721 36069 292- 

NB 37115 5202 188996 13744 10789 3608 33182 3865 

DT 45864  901-  193297+ 4995 13338  467-  36323+ 1316 

LR 40236 11585 182613 10623 8720 5333 31457 5934 

SVC 31163 11555 182643 19696 8055 6370 30420 6599 

YCbCr 

KNN  49999+ 659 193539  860-  14366+ 537 36253  288- 

NB 46163 1669 192529 4696 13408 321 36469 1246 

DT 46779  220-  193978+ 4080 13673 188-  36602+ 981 

LR 40199 11470 182728 10660 8707 5342 31448 5947 

SVC 30362 19114 175084 20497 2931 7310 29480 11723 

CbCr 

KNN  47519+ 355 193843  3340-  14010+ 283 36507  644- 

NB 46172 2194 192004 4687 13275 327 36463 1379 

DT 47334  296-  193902+ 3525 13341  239-  36551+ 1313 

LR 37600 12618 181580 13259 4959 5738 31052 9695 

Table 5:  Confusion Matrix Entries for Various Cases of Color Space and Duplicate 
Inclusion 

 

From Table 6, we observe that the two SL models that share the best values for all the metrics are 
KNN and NB (except for one occasion for DT). Hence, we will use them first to evaluate the 
effect of color spaces and duplicates on the skin segmentation problem. For KNN, converting 
from RGB to YCbCr enhances the results for all the metrics, but going from YCbCr to CbCr 
makes them all worse. For example, moving from RGB to YCbCr in case of including duplicates, 
changes the accuracy from 99.18% to 99.38%, F1-score from 97.98% to 98.49%, ROC-AUC from 
99.18% to 99.40%, and PR-AUC from 98.03% to 98.39%. However, moving from YCbCr to CbCr 
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color space changes the values back down to 98.49%, 95.85%, 97.37%, and 95.46%, respectively, 
which are even worse than the case of RGB color space. This suggests that intensity (Y) is an 
important feature for skin segmentation and that chrominance information (Cb and Cr) is not 
enough to discriminate skin. Surprisingly enough though, NB shows the same behavior when 
moving from RGB to YCbCr but neglecting the Y feature does not affect the ranking metrics, 
while slightly degrading performance in terms of threshold metrics. From this, we can conclude 
that intensity importance is relevant to the algorithm used. Nonetheless, we can say that generally 
YCbCr is the best color space among the three for skin segmentation. 

Considering only the YCbCr now, the dismissal of duplicate records gives worse performance for 
KNN despite the metric that we apply. For NB, there is a slight change in values up and down for 
both metric types. Hence, again we can say that the importance of information held by duplicate 
records is relevant to the algorithm used. 

Now to compare SL algorithms, by considering only the threshold metrics, KNN dominates in five 
cases out of six. Consequently, this leads to considering KNN as the best classifier regarding the 
prediction error with a maximum accuracy of 99.38% and F1-score of 98.49% both in YCbCr color 
space with duplicates. If ranking metrics are considered however, NB gives the best results in four 
cases out of six (all in YCbCr and CbCr) and maximum overall values of 99.75% and 98.51% for 
ROC-AUC and PR-AUC, respectively. This concludes that NB could separate class instances better 
than KNN did when YCbCr and CbCr color spaces were adopted. However, if we consider the 
case of YCbCr including duplicates, KNN gives 99.40% and 98.39% for ROC-AUC and PR-AUC, 
respectively, which are very close to the overall maximum values of NB. As KNN is continually 
leading in terms of threshold metrics, we can assume that KNN is better than NB for skin 
segmentation classification, and the best among all SL models considered in our paper. 

 

Model 
 

With duplicates Without duplicates Color 
space ACC F1 ROC-AUC PR-AUC ACC F1 ROC-AUC PR-AUC 

SVC 81.95 45.91 93.34 69.07 65.14 21.59 81.84 55.07 

RGB 

KNN 99.18 97.98 99.18 98.03 98.03 96.59 98.93 96.64 

NB 92.27 77.49 93.61 84.45 85.47 73.27 93.13 85.9 

DT 97.59 93.19 94.85 90.54 96.56 93.57 94.96 90.6 

LR 90.94 77.63 94.59 70.51 78.1 59.28 85.79 63.7 

SVC 92.03 81.95 94.26 68.96 71.63 61.91 83.15 58.06 

YCbCr 

KNN 99.38 98.49 99.4 98.39 98.4 97.2 98.97 96.81 

NB 97.4 92.71 99.75 98.51 96.95 94.24 99.6 98.57 

DT 98.17 95.07 95.77 92.97 97.76 95.89 96.51 94.13 

LR 90.97 77.66 94.58 70.44 78.06 59.15 85.79 63.68 

SVC 86.67 72.45 94.48 67.18 67.17 39.98 83.72 59.14 

CbCr 

KNN 98.49 95.85 97.37 95.46 98.2 96.78 98.46 96.71 

NB 97.19 92.21 99.75 98.55 96.68 93.8 99.62 98.47 

DT 98.44 95.94 96.7 94.4 96.98 94.46 95.69 92.79 

LR 89.44 73.88 94.05 67.89 70 33.78 84.74 62.02 

Table 6:   Summary of Experimental Results for Skin Segmentation Dataset 
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Figure 10: Comparative Graphical Representation of The Achieved Results by SL Methods for Skin 
Segmentation Dataset Classification 

Nonetheless, if execution time is crucial, which is the case in real-time applications, then opting for 
NB is more beneficial. Indeed, based on Table 7 and Figure 11 which indicate the execution time 
for each classifier (best results are marked with bold), we can quickly discern that KNN takes much 
more time than any other SL method. The reason of this phenom is clear, KNN algorithm measures 
the distance between a new instance and all existing instances, stores the indexes and the distances 
in a collection, sorts the collection in ascending order, selects the class label of the K first records 
from the collection, and finally applies the mod of the K class labels as a label for the new instance. 
Those steps are repeated for each instance belonging to the test set, which makes the execution 
time of KNN very long as opposed to other SL methods. 

 

With duplicates Without duplicates Color 

space SVC KNN NB DT LR SVC KNN NB DT LR 

0.239 2.562 0.223 0.211 0.218 0.048 0.424 0.047 0.036 0.039 RGB 

0.226 2.534 0.188 0.167 0.179 0.045 0.401 0.045 0.042 0.041 YCbCr 

0.197 4.235 0.188 0.196 0.178 0.048 0.361 0.048 0.037 0.035 CbCr 

Table 7:   Summary of Experimental Results in Terms of Execution Time (sec) 

 

 

 

Figure 11: Comparative Graphical Representation of The Achieved Results by SL Methods for Skin 
Segmentation Dataset in Terms of Execution Time 
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5. Conclusion 

In this study, we addressed the skin segmentation problem based on pixel color using SL methods. 
We aimed to find the best color space among RGB and YCbCr for this purpose, we investigated 
the effect of the intensity (Y) on skin segmentation classification, we also evaluated the effect of 
duplicate records dismissal on the classification results, and eventually, we found the best SL model 
for skin segmentation classification considering all the aspects mentioned above. 

In all the cases, YCbCr was perceived to be better than RGB. The intensity (Y) importance was 
found to be relevant to the algorithm used, for instance, KNN performed better considering the 
intensity (Y), but NB was almost not influenced by it. Duplicates' influence was also found to be 
relevant to the used algorithm. KNN performed better with duplicates, and NB almost gave even 
results. The best SL model that outperformed all the other SL models in almost all the cases 
considered is KNN. Despite this, evaluation metrics were found crucial for finding the superior SL 
model. In the case of threshold metrics, KNN outperformed all the other classifiers, still, NB 
achieved commending results while considering the ranking metrics. As a result, metrics should be 
chosen carefully for each specific application. Execution time is also an important factor in the 
decision of the best model, the KNN algorithm was the worst in this regard.  

For future works, we suggest focusing on a specific skin segmentation application and trying to 
find the best evaluation metric that suits the application in concern then making the comparison 
again. Adopting other SL methods such as artificial neural networks (ANN), convolutional neural 
networks (CNN), or deep neural networks (DNN) will be examined. Also, the inclusion of other 
color spaces that separate intensity and color information is of great interest. Finally, experimenting 
on a different dataset will guarantee more robust results. For example, the ECU dataset [25] which 
consists of 4,000 color images with ground-truth prepared manually for skin segmentation and face 
detection. It is the largest dataset available with 209 million skin pixels and 902 million non-skin 
pixels. 
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