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Abstract. Engagement of students plays a crucial part in education, even if they are gifted children. We 
know a success story: the extracurricular mathematics camps of Lajos Pósa for talented teenagers in 
Hungary. The key to that success is the excellently engineered network of problems that guide students 
through discovering the world of higher-level mathematics. It would be a novel approach to teach com-
puter programming and algorithms similarly. In this paper, we attempt to design a network of problems 
selected specifically for discovery learning of algorithms and data structures from beginner to advanced 
level, targeted for secondary and high school talented students. This could serve as the curriculum for 
extra classes or camps conducted with the problem-based teaching method we describe. 
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1. Introduction 

There is a unique system for mathematics talent education in Hungary, led by mathematician Lajos 
Pósa and his students. The core element of this system is the series of camps in which gifted pupils 
can explore mathematics with inquiry-based learning [1]. It is the author’s goal to establish a similar 
initiative in the field of computer science. Within computer science, we focus on the core program-
ming skills by teaching algorithmic programming from the beginner to the highest level. 

Algorithmic programming involves dealing with well-defined problems to which the solution is an 
algorithm that calculates the desired output from the given input, and the program is a way of 
expressing this algorithm that allows executing and verifying the solution on a computer. Correct-
ness and effectiveness are both key measures that are evaluated by extensive testing of the pro-
grams. There are a lot of excellent resources available online which promote learning algorithmic 
programming on an advanced level, for example Halim’s book [2], and the massive problem base 
of past Codeforces contests [3]. However, to use them for our educational goals, we need to or-
ganize these materials and exercises in such a way that enables learning through a series of problem-
solving. 

In this discovery learning scenario, we would like to create situations in which students are facing 
a problem, and they have already seen the key ideas leading to the desired algorithm while solving 
different tasks previously. Therefore, the main challenge of the teacher is designing the curriculum 
and arranging the exercises in a proper structure that makes it possible to introduce the right prob-
lem at the right time. In this paper, we present a system of topics and methods, accompanied by 
exercises, that could serve as the curriculum for extra classes or camps conducted with the prob-
lem-based teaching method that we already use in individual and small group programming lessons 
for high school students. 

The structure of this paper is organized as follows. In chapter 1, we briefly introduce the mathe-
matics camps and the didactics of Pósa in the context of discovery learning. In chapter 2, we de-
scribe the goals and challenges of adapting the Pósa-method for computer programming talent 
education and elaborate on the design and of the curriculum. In chapter 3, we present the curricu-
lum in detail, list of topics grouped to units and tables with the collection of tasks for each of them. 
In chapter 4, we show an example of a topic, dynamic programming followed throughout the entire 
curriculum. Chapter 5 contains a short summary of the presented content. 
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1.1. Discovery learning 

The term discovery learning refers to pedagogical methods, in which students learn through their 
exploration of a certain topic. The goals are usually threefold: 

• acquire deep knowledge, 

• develop cognitive skills, 

• increase engagement. 

Deep knowledge in this sense means that the learned information, concepts and methods have 
very strong roots in the long-term memory, thus the person has a higher level of understanding of 
the subject and can apply this knowledge more successfully in new situations. During the learning 
process, students spend most of the time actively working individually or in groups, their 
knowledge is constructed by themselves through these activities. This requires immerse brain ca-
pacities used in a variety of forms, through which cognitive skills develop highly. Students’ joy is a 
key value in the whole process, to motivate them for further participation and increase their en-
durance. 

Discovery learning is strongly related to the constructivist learning theory, which relies on the as-
sumption that people construct their knowledge during mental activities. The learners are consid-
ered organisms that seek meaning, and reflecting on their experience, derive their own set of rules 
and mental models of the world. Numerous educators apply discovery learning in modern educa-
tion. Wouter van Joolingen [4] describes it as “a type of learning where learners construct their own knowledge 
by experimenting with a domain and inferring rules from the results of these experiments”. He argues that they 
will understand the domain at a higher level than when the necessary information is just presented 
by a teacher or an expository learning environment. In most cases, discover learning is tied to 
problem-solving, Borthick and Jones [5] write that “participants learn to recognize a problem, characterize 
what a solution would look like, search for relevant information, develop a solution strategy, and execute the chosen 
strategy”. 

For us, a type of discovery learning called problem-based learning is particularly interesting, which 
is defined by Finkle and Torp [6] as “a curriculum development and instructional system that simultaneously 
develops both problem-solving strategies and disciplinary knowledge bases and skills by placing students in the active 
role of problem solvers confronted with an ill-structured problem that mirrors real-world problems.” Our approach 
is very close to this definition, as we will show it below. 

1.2. Mathematics camps in Hungary 

Mathematics talent education has a strong tradition in Hungary, and there are numerous mathe-
matics camps. Here we describe the camps organized by The Joy of Thinking foundation [7], es-
tablished by Lajos Pósa. These weekend math camps are characterized by the internationally re-
nowned Pósa-method, which is a form of guided discovery learning. The author, being an ex-
student of Lajos Pósa, has been assisting in these camps for many years, and now teaching two 
groups since 2014, so he has a working knowledge of Pósa’s pedagogy. 

According to Bibergall [8], guided discovery learning is characterized by convergent thinking. “The 
educator devises a series of statements or questions that guide the learner step by step, making a series of discoveries 
that leads to a predetermined goal”. In our math camps, the learner is guided through exercises that have 
strong interconnection under the surface. Katona and Szűcs [9] describe this as a web of problem 
threads. 
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1.3. Problem threads in the Pósa-method 

A problem thread consists of tasks that have a connection, which can be of different types. A type 
of connection might be that they share the topic, e.g. graph theory. Another type of connection is 
when the problems build on top of each other, meaning that the solution of one task needs certain 
ideas, methods that are more easily available for students if they solved a previous task. This com-
mon element of thinking, which links tasks in one thread, is called the kernel of the thread by 
Katona and Szűcs [9]. 

For example, the above-mentioned kernel could be induction, which Pósa calls chain-reaction for 
young students and starts with a simple logical task of the style “who robbed the bank”, and later 
on students will get to proving complex theorems like “every tournament graph has a Hamiltonian 
path” using induction. Here we would like to mention that the latter statement is not presented in 
such a plain way, but instead, an open question with dragons carrying people between islands, to 
make it more fun for kids. 

Pósa always emphasizes not to provide a statement to prove, but ask an open question instead, or 
even better – which happens in this dragon-world – just present a situation and let the students ask 
questions. We aim to introduce kids to research, and particularly in mathematics an interesting 
question is very valuable to the scientific community. In this regard, the Pósa-method is also a type 
of inquiry-based learning. Students start with divergent thinking when solving a task, the experi-
mentation in the domain of mathematics has a significant role in Pósa’s pedagogy. 

1.4. The web of problem threads 

During the mathematics sessions of the previously mentioned camps, there are always multiple 
problem threads running in parallel, which means that a lot of tasks from different threads are 
presented to the students simultaneously. The threads are not isolated, they may have meeting 
points, common problems, they may have important links or dependencies between them, forming 
a web of problem threads. 

The web of problem threads is like a master plan, leading the learner to acquire knowledge and 
skills that are our educational goals. So, the main challenge of the teacher is to design the curriculum 
to suit the intended development of students, which means identifying the competencies to learn, 
organizing them in the right system, and collecting or creating a vast amount of problems and 
exercises that will trigger and guide the learning process. In the following, we show a system of 
topics and methods accompanied by exercises that serve as a base of our web of problem threads 
for algorithmic programming talent education. 

2. Discovery learning in algorithmic programming 

We need to define our educational goals. As for the mathematics talent education program, Juhász 
[10] says “children should be taught how to think, rather than making them learn theorems and formulas by heart 
or giving them ready-made methods to solve problems”. Following this principle, our focus is on teaching 
algorithmic thinking and problem-solving. Another important objective is to show the joy in think-
ing about interesting problems and creating working programs to solve them. With this, we would 
like to open up the world of competitive programming for the children. 

The emphasis is not on competition, but these contests are aimed to test the algorithmic thinking 
and problem-solving skills of the participants with “nice” tasks. The community of qualified pro-
grammers is preparing the problems of these competitions and they make them so that other peo-
ple would enjoy thinking about them. There is a certain beauty in problems that is hard to describe, 
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and it is much celebrated within the community. This beauty can come from an interesting ques-
tion, an elegant solution, application of a method in an unexpected situation, a nice idea, the con-
nection between different topics, etc. So, the world of competitive programming is partly self-
serving, it provides fun for people doing it, very much like how Lajos Pósa describes the world of 
mathematics [11]. 

Computer programming is a bit different from mathematics. There are a lot of standard algorithms 
and data structures that are almost ready-made methods that you need to customize, combine, and 
apply in numerous different scenarios. We try to teach them through a series of problems, having 
the students discover them mostly on their own, if possible. However, we put more emphasis on 
the applications of these methods in different problems. Therefore, we consider our approach a 
problem-based pedagogy. The problems have similar dependencies and connections between each 
other as the ones in Pósa’s mathematics camps. We create problem threads for the algorithms and 
data structures we teach and try to connect them, thus forming our web of problems. Fortunately, 
the tasks at programming contests usually have some funny stories to cover the underlying prob-
lem, so at first sight it is not obvious to which thread they belong. 

2.1. The objectives of our curriculum, related work 

Designing the curriculum starts with identifying the topics and methods we want to teach. Pro-
gramming competitions reflect quite well what the community of computer scientists consider im-
portant knowledge and skills in the field of algorithmic programming. We selected the elements of 
this curriculum by looking at materials of competitions and those, up-to-date literature helping to 
prepare for contests. 

Our most important source is the Syllabus for the International Olympiad in Informatics (IOI) 
[12], it provides an excellent summary of expected knowledge. Competitive Programming 3 by 
Halim et al. [2] contains most of the topics occurring at ACM International Collegiate Program-
ming Contest for university students. We examined the contents of Laaksonen’s Competitive Pro-
grammer's Handbook as well [13]. There are some excellent on-line resources and tutorials collect-
ing the important algorithms and data structures, for example the CP-Algorithms website [14] 
Geeks for Geeks [15] and various blogposts on Codeforces [16-17]. Using these sources, and our 
experience in the history of high school competitions, we compiled the contents of our curriculum, 
which are the most relevant knowledge for high school students in our opinion. 

There are numerous similar articles, especially about the topic of how to prepare students for com-
petitions. Király [18] describes a whole roadmap of teaching programming from the very beginning 
to the preparations for the IOI, together with proper pedagogical guidelines and useful advice. In 
her doctoral dissertation, Erdősné [19] provides a detailed insight into Hungarian and international 
talent education in informatics, also outlining a plan of teaching advanced level programming 
throughout secondary school. At the concrete topics where they include tasks, both papers present 
very similar exercises to our chosen ones. In comparison to their work and the above-mentioned 
literature, the novelty of this curriculum lies in tailoring the system of problems to the discovery 
learning method of Pósa. Since the selection of tasks and the interconnections play a crucial part 
in our didactics, we provide a more detailed and more complete list of exercises, organized in the 
structure described below.  

2.2 Design and overview of the curriculum 

Most of the books, online courses and tutorials about programming focus on the elements of the 
language. We have different goals, so these are out of scope for us, but we would like to build on 
the basics. Teaching algorithms, we assume knowledge of language elements, like variables, types, 
operators, conditional statements, loops, etc. We start at the very basic algorithmic structures and 
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finish with some of the most complex methods required for the IOI. The primary use of this 
curriculum will be a talent education program with groups of gifted children beginning around age 
12 and lasting until age 17. The examples of Pósa’s mathematics camps showed us that it is possible 
the keep such groups together for years, develop their knowledge systematically, and teach topics 
building upon each other. 

For our problem-based method, the curriculum would be a huge network of tasks, through which 
students discover, practice and expand their knowledge. To design it, first, we look at the bigger 
picture, organize the theoretical backgrounds of the tasks, and identifying interconnections be-
tween them. The resources we used, which are mentioned above in section 2.1, present the mate-
rials categorized and ordered by topics, which is great if we search for something we already know, 
but not the ideal order for learning. We not only talk about their order of difficulty, but our goal is 
also to find the ideal plan, where we minimize the number of great ideas needed to work out the 
desired algorithms. 

Figure 1 shows a graph of curriculum modules, each abbreviated by a short code for readability. 
Full names and descriptions of these can be found in the tables of section 3. We categorized these 
modules into four types that have different colors on the graph: 

• problem-solving techniques (red), 

• algorithms or algorithm templates (blue), 

• data structures (green), 

• theoretical backgrounds or subjects (yellow). 

Interconnections between these elements are visualized by arrows, the thicker the arrow is, the 
stronger we find the dependency between them. We also use light grey arrows, which don’t mean 
dependency, rather similarities, when knowing a method is helpful for the other one. 

Later, in section 3 we divide the modules to units in order to have reviewable segments. We provide 
a collection of problems for each unit, dedicated to modules, with certain objectives. This collection 
is not complete, and never meant to be, extending and changing it constantly is part of our philos-
ophy. These problems serve as a good skeleton for starting a talent education program with dis-
covery learning. For our pedagogy, we define the following three important types of tasks. 

• Introduction problems are the very first problems of a topic that can induce discovery. 

• Reinforcement problems involve the application of a previously discovered method in new 
situations, or they can be practice problems as well, their goal is to strengthen students’ 
knowledge.  

• Synthesis problems in our terminology mean tasks that bring together multiple learned meth-
ods or require a high level of understanding of the concepts involved. 

Problems are, of course, very often linked to topics and problems in different units, which cannot 
be shown in the format of this document. 
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Figure 1: The graph of the curriculum 
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3. Details of the curriculum 

Below we present the parts of the curriculum with more detailed descriptions. Grouping them into 
units serves as an aid for presenting, there are no hard boundaries between them, and there are 
very important interconnections in-between units. We estimate the length of the units to take up 
2-3 weekend camps, which can be scheduled in one year or even in one semester. 

Within units, we propose problems for teaching the algorithms and data structures, where applica-
ble. They are collected from various online problem sets that are publicly available and have a 
judgement system to verify solutions. This is important for us, we would like to show the students 
that not only the theory but the implementation is an essential part of computer science. We use 
identifiers for the problems, that consist of an abbreviation of the problem source listed below, 
and a handle of the problem, which can be used to find it (by web search or on the site itself). 

• CF: Codeforces, CFG: Codeforces Gym [3].  

• HR: HackerRank [24].  

• CC: CodeChef [25]. 

• CSA: CS Academy [26]. 

• SPOJ: Sphere Online Judge [27]. 

• UVa: UVa Online Judge [28]. 

• IOI: Tasks of the International Olympiad in Informatics. Grader for most of them can be 
found at PEG Online Judge [29]. 

• M: Mester [30]. A Hungarian problem collection. Unfortunately, translations for these prob-
lems are not available yet, we plan to write them for the ones that we use, in a new system 
that is under development at Eötvös Loránd University. (We give the English translation of 
task names in parentheses.) 

• ICPC: ICPC Live Archive [31]. 

• TIMUS: Timus Online Judge [32]. 

Erdősné [20] gives an excellent overview of online judges and their features that includes all the 
above-listed websites. As the reader can see in the following chapters, in our problem collection 
we favor Codeforces, HackerRank, and Mester, because using practice mode in these the student 
(or the teacher) has access to the small test cases and their expected answers, which is very helpful 
for debugging. 

3.1. Unit 1: Introduction 

In this unit, we introduce some basic algorithmic patterns that are necessary as building blocks of 
further, more complex algorithms. Most of them operate on a sequence of numbers, so we heavily 
use the one-dimensional array data structure. Zsakó and Szlávi refer to them as programming the-
orems [27]. Students need to acquire firm knowledge of these basics so that later they can easily 
apply them as part of a compound solution. Knowing the required language elements, talented 
students can invent algorithms to solve these tasks. While there is no inevitable dependency be-
tween them, we recommend introducing them in the order below. As the first combination of 
loops and conditional statements (for and if), counting elements with a certain property (e.g. even 
numbers) is a straightforward problem. 

For introducing the algorithms listed below, we generally use the tasks available in Mester [30], the 
Hungarian problem set, categorized accordingly, so we don’t list them here. It is also not difficult 
to invent our own tasks for these basics. Number theory is a great topic for applying and combining 
what we learned in this unit. For example, deciding whether a number is a prime comes down to 
searching for a divisor of it. With summing the divisors, one can search for amicable numbers. It 
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is also a great opportunity to introduce functions as a language element. Discovering the Euclidean 
algorithm, students can see something advanced and very elegant. There is a great task guiding to 
the Euclidean algorithm (CF - 527A. Playing with Paper), in which you start with a rectangular paper, 
and always cut off square-shaped parts of it. 

Code Name Description 

SUM Sum Calculate the sum of a series of numbers. 

COUNT Count Count the elements of a series with a certain property. 

SEARCH Search 
Search for the element(s) with a given property in a se-
quence. 

MIN SEL Minimum Selection Select the minimum/maximum in a sequence. 

SORT Sort 
Sort a sequence with simple algorithms, like bubble 
sort, min. selection sort, counting sort, etc. 

MERGE Merge 
Compute the intersection/union of two sets (ordered 
list of data), using the linear merge algorithm. 

NUM THEORY Basic Number Theory 
Calculate the number of divisors and sum of divisors of 
an integer, search for primes, prime factorization, Eu-
clidean algorithm for GCD. 

Table 1: Modules of the first unit 

3.2. Unit 2: Some basic problem-solving techniques 

In this unit, we dive into the world of programming contest problems. Computing solutions quickly 
becomes a key factor, we introduce the notion of computational complexity and analyze every 
solution from this aspect. Greedy algorithms with obvious greedy decisions are a great start to 
provide easy success to everyone, and not much later problems for dynamic programming will 
show that greedy doesn’t always work. The technique of recursion is essential to introduce early 
since it is used in multiple other methods of this unit. Building on the concept of recursion, and 
knowledge from unit 1, we can guide the learners to efficient sorting algorithms, like merge sort 
and quicksort. 

Code Name Description 

GREEDY Greedy Algorithms 
Solve problems using greedy decisions, recognize 
whether it leads to the optimum. 

REC Recursion 
Get familiar with the power of recursion in typical sce-
narios. 

MERGE SORT Merge Sort Recursive sort algorithms: merge sort and quicksort. 

2 POINT Two Pointers 
The two pointers principle for speeding up some opti-
mization tasks. 

PREFIX SUM Prefix Sum 
The prefix sum / cumulative sum of a sequence, as a 
data structure. 

PATH DP DP for Finding Best Path 
Introduction to dynamic programming: optimize a 
route on a grid. 

GAME DP DP for Simple Games 
Find the winning strategy in simple two-player games 
with dynamic programming. 

COMB Combinatorics 
Basic tasks involving combinatorics, like permutations, 
combinations, Fibonacci-type sequences, etc. 

BIN SEARCH Binary search 
Bisect to find a value in a sorted range, and to find ex-
tremum using a predicate. 

BACKTRACK Backtrack 
Speed up brute-force algorithms by backtracking, 8 
queens’ problem and similar. 

KNAP DP DP in Knapsack problem 
Some typical DP problems: Coin Change, Knapsack 
and alike. 

Table 2: Modules of the second unit 
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With the prefix sum data structure, students can construct their first powerful data structure to 
answer queries. Binary search appears in the form of looking for a value in a sorted range, and then 
comes the great idea to use it when maximizing or minimizing some target with some constraints 
(e.g. in task CF - 760B. Frodo and Pillows). We also show problems where only exponential solutions 
are known, but we can speed them up using backtracking. A nice introduction task could be to 
generate all balanced parentheses sequences of a certain length. 

Dynamic programming could be built up in different ways, we propose starting it with problems 
in which we examine paths on a grid with only right and downwards steps. In this case, calculating 
partial results with a bottom-up strategy comes as a natural idea, much easier conceptually than 
transforming recursive formulas in problems like the Coin Change or the Knapsack problem. We 
eventually get there as well, but in the meantime, we also take a step applying dynamic programming 
for computing winning strategies in simple two-player games. It is used also in combinatorial prob-
lems, which are at this level mostly related to the Pascal triangle, Fibonacci-type sequences, permu-
tations and variations. Below we include a table showing example tasks that we propose for the 
modules in this unit, according to the principles described in section 2. 

Code Introduction Reinforcement Synthesis 

GREEDY 
M - Wifi, 

HR - Priyanka and Toys 

M - Mekk Elek (Mekk Elek 
the Handyman) 

M - Fénykép (Photo) 

CF - 349B. Color the Fence 

M - Termek (Rooms) 

CF - 1077E. Thematic Con-
tests 

REC Towers of Hanoi 
M - Felbontás (Decomposi-
tion) 

HR - The power sum 

2 POINT 

CF - 660C. Hard problem, 

M - Autószállítás (Car Ship-
ping), 

CF - 1133C. Balanced Team 

CF - 616D. Longest k-good 
Segment, 

CF - 1006C. Three Parts of 
the Array 

M - Nyaralások (Trips), 

IOI11 - Rice Hub 

PREFIX SUM 
SPOJ - CSUMQ, 

CF - 313B. Ilya and Queries, 

M - Távoli bolygó (Distant 
Planet), 

CF - 816B. Karen and Cof-
fee 

M - Képátló (Image 
Diagonal), 

IOI11 - Rice Hub 

PATH DP 

M - Kincsek a hegyoldalon 
(Treasures on the hillside), 

M - Pontgyűjtő verseny 
(Point collecting contest) 

M - Benzin (Gasoline), 

CF - 429B. Working out  

M - Lépcsők (Stairs), 
M - Képátló (Image 
diagonal), 

CF - 407B. Long Path 

GAME DP HR - Game of Stones 

HR - A Chessboard Game, 

M - Számok elvétele (Re-
moving Numbers) 

M - Fehér és Fekete 
korongok (White and Black 
Tokens), 

CF - 731E. Funny Game 

COMB 
HR - Picking Cards, 

CF - 617B. Chocolate 

HR - Sherlock and Pairs, 
CF - 894A. QAQ 

M - Lépcsők (Stairs), 

HR - Merge List 

BIN SEARCH 

CF - 706B. Interesting 
Drink, 

CF - 600B. Queries About 
Less or Equal Elements 

CF - 760B. Frodo and Pil-
lows, 

CF - 670D2. Magic Powder 

IOI11 - Rice Hub, 

UVa - 1079. A Careful Ap-
proach 

BACKTRACK 
Balanced Parentheses, 

8 Queens problem 
M - Ültetés (Seating) CC - KOL1510 

KNAP DP 

M - Nem kifizethető címlet 
(Unpayable Amount), 
M - Bélyeg (Stamps), 
SPOJ - KNAPSACK 

CF - 19B. Checkout Assis-
tant, 

M - Munkagépek (Machines), 
M - Vásár (Sale) 

CFG - 102534B. Need 
More T-shirts, 

CF - 1132E. Knapsack 

 

Table 3: Problems for the second unit 
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3.3. Unit 3: Graph theory-driven problems and algorithms 

A lot of real-life problems can be formulated with graphs, and so they appear frequently in pro-
gramming competitions above a certain level. In this unit, we teach the most commonly used, but 
still not too complex algorithms. Some theory is involved, students need to learn the notion of 
trees and graphs. We recommend problems on rooted trees first which have recursive solutions, 
because they are quite elegant and serve as a base for depth-first search. Three basic, linear data 
structures can be learned concurrently, stack, queue and double-ended queue, we apply them in 
graph traversals, and at this point some beautiful and hard problems can show their advantages 
(HR - Largest Rectangle, HR - Deque-STL). 

The two types of graph traversal (breadth-first and depth-first) are introduced on simple, undi-
rected graphs. At this level, breadth-first search has more applications, while we build on depth-
first search a lot in the next unit. The graph traversals work the same way in directed graphs, and 
particularly acyclic graphs of this type are interesting for us, they model practical problems like 
scheduling a project, university studies or this curriculum itself. There is a nice combinatorics task, 
where the question is how many different paths are between two vertices (HR - Kingdom Connectivity). 

Code Name Description 

TREES Trees, Binary Trees 
Tree structure appearing in different situations, e.g. 
family tree, company structure. 

TREE REC Recursion on trees 
Compute values for trees using recursion, problems in-
volving a hierarchical structure. 

LIST Linked lists 
Know the basics of linked data structures, and when to 
use them considering their advantages and disad-
vantages. 

STACK Stack Understand and use the stack (LIFO) data structure. 

QUEUE Queue, Deque 
Understand and use the queue (FIFO) and double-
ended queue data structures. 

GRAPHS Graphs 
Conceptual introduction of graphs as a background of 
different problems. 

BFS Breadth-First Search 
Solving problems using graph traversal in increasing or-
der of distance from a vertex.  

DFS Depth First Search 
The recursive depth-first search algorithm and basic ap-
plications. 

DAG Directed Acyclic Graphs 
Problems involving a DAG, like critical path method, 
topological ordering. 

SP ALGOS Shortest Path Algorithms 
Find shortest paths in a graph. Bellman-Ford, Floyd-
Warshall, Dijkstra algorithms. 

HEAP Heap, Priority Queue 
Understand the heap data structure, and use priority 
queue when needed, e.g. in Dijkstra and Prim algo-
rithms 

MST Minimum Spanning Tree 
Find the minimum spanning tree in graphs. Kruskal 
and Prim algorithms. 

DSU Disjoint Set Union 
The DSU (or Union-find) data structure applied in vari-
ous problems, e.g. Kruskal algorithm. 

Table 4: Modules of the third unit 

Two data structures, DSU and heap are included here for two reasons: they are necessary for effi-
cient implementations of Kruskal, Dijkstra and Prim algorithms, and both are viewed as rooted 
trees, so they perfectly fit in here. In programming competitions, heap is generally applied by using 
the priority queue included in standard libraries, while DSU needs to be implemented. 

We conclude the unit with two more advanced problems on weighted graphs: shortest paths and 
minimum spanning trees. Well-known algorithms listed below can be discovered by students with 
some hints. Since weighted graphs can model various real-world problems, there are a huge amount 
of competition tasks where these algorithms are necessary with some modifications. 
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Code Introduction Reinforcement Synthesis 

TREE REC 
M - Titkos társaság (Secret 
association)  

CF - 115A. Party, 

CF - 580C. Kefa and Park 
HR - Even Tree 

STACK 
HR - Equal Stacks, 

UVa - 514. Rails  
HR - Balanced Brackets 

HR - Largest Rectangle 

CF - 547B. Mike and Feet 

QUEUE 
UVa - 10935. Throwing 
cards away 

HR - Deque-STL IOI06 - Pyramid 

BFS 
List vertices in order of dis-
tance from one vertex 

M - Randi (Date), 

M - Csapat (Team), 

CF - 796D. Police Stations 

M - Mérőkannák (Measuring 
cups), 

CSA - BFS-DFS 

DFS SPOJ - ABCPATH 

CF - 445B DZY Loves 
Chemistry, 

M - Utcaseprő (Street 
sweeper) 

CF - 1316D. Nash Matrix 
CSA - BFS-DFS 

DAG 

M - Építkezés (Contruction), 

M - Utak száma (Number of 
routes) 

CF- 915D. Almost Acyclic 

Graph 

CF - 512A. Fox and Names 

HR - Kingdom Connectivity 

SP ALGOS 
CF - 20C. Dijkstra, 

CF - 295B. Greg and Graph 

M - Autóbusz járatok (Bus 
lines), 

HR - Jack goes to Rapture 

M - Telephelyek (Sites), 

IOI11 - Crocodile 

MST SPOJ - MST M - Malom (Mill) 
HR - Roads in Hackerland 

CF - 160D. Edges in MST 

DSU 
CF - 1095F. Make It Con-
nected 

M - Hálózat tesztelés 

SPOJ - CONSEC 

CC - ABROADS 

CF - 875F. Royal Questions 

Table 5: Problems for the third unit 

3.4. Unit 4: Various advanced algorithms, geometry, combinatorics 

Our fourth unit contains some theoretically complicated algorithms. Speaking of Hungarian na-
tional contests, these are only required for the highest age group (11-12th grade). One can argue 
that discovery learning is not possible in some of these topics. We still aim for introducing them 
through exercises in which we provide hints to the students. Furthermore, deep understanding can 
be also achieved when the students implement solutions based on these complex algorithms. 

Code Name Description 

LCS DP 
Longest Common Subse-
quence 

Dynamic programming using non-trivial two-dimen-
sional arrays. 

LIS DP 
Longest Increasing Subse-
quence 

Dynamic programming sped up with binary search or 
other methods. 

BIT DP Bitmask DP 
Dynamic programming on subsets, using the bit vector 
representation of sets. 

ART POINT 
Articulation Points, 
Bridges 

Biconnected graphs, Tarjan’s algorithm and the L-value 
for finding cut vertices and edges.  

SCC 
ALGOS 

Strongly Connected Com-
ponents 

Kosaraju’s and Tarjan’s algorithm and applications. 

EULER PATH Eulerian Path 
Condition of Eulerian path or circuit and finding it in 
directed and undirected graphs. 

MAX MATCH Maximal Matching 
Hungarian algorithm for the maximal matching in a bi-
partite graph. 

MOD ARITH Modular Arithmetics 
Calculate powers and inverses efficiently modulo a 
given number. 

ADV COMB Advanced Combinatorics Various difficult combinatorics problems. 

INC-EXC 
Inclusion-Exclusion Prin-
ciple 

Apply the inclusion-exclusion principle to answer some 
questions in combinatorics. 

GEOM Geometry Geometric problems on the Cartesian plane. 

Table 6: Modules of the fourth unit 
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There are graph theory topics (Articulation Points and Bridges, Strongly Connected Components, 
Eulerian Path, Maximal Matching) which mostly rely on depth-first search and its extensions. We 
would like to mention two beautiful tasks, CF - 508D. Tanya and Password, which is a surprising 
application of Eulerian paths, and UVa - 12668. Attacking Rooks, where the idea is to introduce a 
bipartite graph where the edges are fields on the chess table. 

Dynamic programming is present throughout the curriculum in many other algorithms, but here 
we revisit it with more advanced applications. Below, we named two characteristic tasks (Longest 
Common Subsequence and Longest Increasing Subsequence), but there are much more included, 
in the first topic could be any other task that requires a non-trivial two-dimensional array formula-
tion, and the second is related to tasks where we combine dynamic programming with other tech-
niques, like binary search in the example problem. 

Advanced Combinatorics includes not only questions about how many ways we can construct 
something, there is often an ordering (e.g. lexicographical) defined between these and telling the 
element at a given position requires a profound understanding of recursive patterns. The number 
of solutions is often very large, and then the answer is expected modulo some big prime, so the 
apparatus of modular arithmetic is used here. That is also very interesting itself, cryptographic ap-
plications can be visited. 

Code Introduction Reinforcement Synthesis 

LCS DP HR - The LCS 
M - Jelek (Signs), 
M - Rúd felvágás (Stick cut-
ting) 

CF - 607B. Zuma, 
HR - LCS Returns 
IOI09 - Raisins 

LIS DP 
M - Konténeroszlopok 
(Container Columns) 

M - Kockákból legmagasabb 
torony (Highest Tower of 
Cubes) 

CF - 650D. Zip-line 

BIT DP M - Vásárlások (Purchases) 
CF - 580D. Kefa and 
Dishes 

CFG - 102128B. Cake 
Tasting 

ART POINT SPOJ - SUBMERGE 
M - Duplán elérhető pontok 
(Double reachable points) 

CF - 700C. Break Up 

CF - 732F. Tourist Reform 

SCC ALGOS 

SPOJ - CAPCITY 

UVa 13057 - Prove Them 
All 

CF - 427C. Checkposts 

CF- 949 C. Data Center 
Maintenance 

M - Hercegek házassága 
(Wedding of Princes) 

SPOJ - ADAPANEL 

EULER 
PATH 

M - Zárkód (Lock code) 

CF - 1334D. Minimum 
Euler Cycle 

CF - 508D. Tanya and Pass-
word 

M - Dominó 

MAX MATCH HR - Real Estate Broker 

UVa - 12668. Attacking 
Rooks 

CF - 498C. Array and Oper-
ations 

M - Hercegek házassága 
(Wedding of Princes) 

SPOJ - QUEST4 

MOD ARITH 
UVa - 10104. Euclid Prob-
lem 

CF - 300C. Beautiful Num-
bers, 

CF - 717A. Festival Organi-
zation 

M - Szigetek (Islands), 

HR - Game of Thrones II 

ADV COMB 

HR - Lexicographic steps, 
CF - 9D. How many Trees? 

CC - NWAYS 

CF - 612E. Square Root of 
Permutation, 
M - Birtokfelosztás (Divid-
ing land) 

M - Szigetek (Islands), 

HR - Game of Thrones II 

INC-EXC SPOJ - NGM2 UVa - 11806. Cheerleaders CF - 102128B. Cake Tasting 

GEOM 

M - Házak (Houses) 

M - Zárt poligon készítése 
(Creating a closed polygon) 

M - Autópálya (Highway) 

M - Háromszög (Triangle) 

M - Hegy (Mountain) 
CF - 552D. Vanya and Tri-
angles. 

UVa - 12278. 3-sided dice 

Table 7: Problems for the fourth unit 
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Geometry is a huge category, it starts with basic operations, like computing orientations, deciding 
if segments intersect, etc. and leads to sophisticated methods like sweep-line principle and convex 
hull algorithm. It is a very good example of how we can build up a topic step-by-step. We need to 
rely on various knowledge from mathematics at school, most importantly the Cartesian coordinate 
system. 

3.5. Unit 5: Complex data structures, string algorithms 

The final unit is dominated by data structures and contains some topics which are not required 
even for the IOI. Teaching data structures like Segment Tree, Fenwick Tree, Trie or Sparse Table 
with discovery learning is quite difficult, we have not researched this area extensively yet. Currently 
our pedagogy goes with describing and visualizing them on examples, and having the students work 
out the implementation for deeper understanding. The emphasis is on customizing them and using 
them in various new scenarios. A great example is using the Trie for binary numbers, e.g. finding 
the pair of numbers with maximal XOR value in a given set. 

We also aim to capacitate the students to describe the data structures that they need to solve a 
certain problem, in terms of its operations and their maximum complexity. The next step is design-
ing such a data structure, which is usually adapting a known data structure appropriately. 

Code Name Description 

SEG TREE Segment Tree 
The Segment Tree data structure for updating and que-
rying certain computed values in a range. 

BI TREE 
Binary Indexed / Fenwick 
Tree 

The Fenwick Tree data structure as an alternative to 
segment trees. 

TRIE 
Trie, Suffix Tree, Suffix 
Array 

Data structures for storing and searching text corpora: 
Trie, Suffix Tree, Suffix Array. 

Z, KMP 
Z-algorithm, Knuth-Mor-
ris-Pratt 

Advanced string pattern matching algorithms: Z, KMP 
algorithm. 

FLOW Network Flows 
Modell problems as network flows, minimum cut maxi-
mum flow algorithm. 

GAUSS Gaussian Elimination Solve a system of linear equations. 

LCA 
Lowest Common Ances-
tor 

Finding the lowest common ancestor of tree vertices, 
and its applications. 

SQRT SQRT Decomposition 
The Square Root Decomposition problem-solving 
technique. Mo’s algorithm. 

ST, RMQ 
Sparse Table, Range Mini-
mum Query 

Sparse Table for solving the Range Minimum Query 
problem, plus further applications. 

Table 8: Modules of the fifth unit 

The unit also contains the topic of Network Flows, solving a system of linear equations by Gaussian 
elimination, and Square Root Decomposition as a problem-solving principle. All of them appear 
in some very hard tasks, with tricky applications. Computing the Lowest Common Ancestor and 
Range Minimum Query are connected topics, furthermore, they can be related to data structures 
in this unit. 

Finally, we included some advanced string processing algorithms in this unit, which are mostly 
about efficiently searching a pattern in a text. However, they can be used for many different prob-
lems, like counting the distinct substrings of a string. Together with the Trie, Suffix Tree and Suffix 
Array data structures, they form a whole toolset to tackle tasks with strings. 
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Code Introduction Reinforcement Synthesis 

SEG TREE 
UVa - 12532. Interval Prod-
uct 

CF - 380C. Sereja and 
Brackets, 

CF - 474F. Ant Colony 

CF - 524E. Rooks and Rectangles 

CF - 242E. XOR on Segment 

BI TREE SPOJ - INVCNT CF - 61E. Enemy is Weak SPOJ - DCEPC206 

TRIE SPOJ - PHONELST CF - 455B. A Lot of Games ICPC - 4682. XOR Sum 

Z, KMP CC - KAN13C 
CC - TASHIFT, 
CF - 126B. Password 

SPOJ - DISUBSTR 

FLOW SPOJ - POTHOLE 
UVa - 820. Internet Band-
width 

CF - 546E. Soldier and Traveling 

GAUSS SPOJ - XMAX 
TIMUS - 1042. Central 
Heating 

 

LCA HR - Kth Ancestor 
TIMUS - 1471. Distance in 
the Tree 

CF - 342E. Xenia and Tree 

SQRT SPOJ - GIVEAWAY 
CF - 13E. Holes, 

CF - 86D. Powerful Array 
CF - 342E. Xenia and Tree 

Table 9: Problems for the fifth unit 

4. Following a topic throughout the curriculum: Dynamic Programming 

4.1. Our approach to DP 

Many educational materials introduce Dynamic Programming (DP) using recursion, as a way of 
overcoming the time complexity caused by the curse of recursion. We would like to show an alter-
native way here, without claiming any of them better. Erdősné [21] and Forišek [22] give an excel-
lent overview of the place of DP in popular algorithm textbooks, and rightfully argue that those 
books do not provide a good approach to present the DP paradigm to secondary school students. 
Both papers suggest teaching DP after recursion, Forišek [22] even gives a strategy to transform a 
top-down recursive solution to a bottom-up DP solution. Király [18] suggests that DP should be 
taught only after recursion and backtracking and greedy algorithms at an advanced stage of pro-
gramming knowledge. Independently from the three mentioned authors, we selected very similar 
problems and almost the same order of them. There is one crucial difference: our approach starts 
with the bottom-up strategy. We agree with Erdősné [21] that the LOGO language can provide 
very solid grounds for recursion at a young age, but unfortunately in recent years we see a lot of 
children who start learning algorithmic programming without doing any LOGO before. This is 
one reason why we do not wish to rely on recursion. 

In our scenario, there are young kids, for whom arrays are generally easy to understand, while 
functions are harder, recursive functions even more. Since we teach programming and algorithms 
together, and we consider the features of the programming language as tools for our algorithms, 
we can bring up the concept of DP with very simple problems, even before teaching functions. 
Regarding the approach of Forišek [22], another aspect of our method is that we do not start with 
presenting a method of problem-solving, but give a problem to the children, in which the single 
way of succeeding is the solution that we intend to teach. For this, we need problems where they 
don’t have another choice, but to follow the way the teacher wants to follow. If we started with 
Fibonacci numbers, expecting children to first come up with the recursive solution and then figure 
out the steps to convert it to a bottom-up DP, our educational goals might be “screwed” by smart 
kids, who immediately solve it with an array - which is quite a natural solution. 

We aim to introduce DP as a way of solving a task by “filling a table”. It sounds much more 
innocent than “decomposing to subproblems”, even though that is happening under the surface. 
We will include some formulas to show how the DP tasks get more and more complex as we 
advance in the curriculum. 
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4.2. First steps 

A simple introductory task is listed above as M - Kincsek a hegyoldalon (Treasures on the hillside), in 
which there are treasures on a grid, and we need to collect as many as we can, only moving to the 
right and down, starting from the upper left corner. The idea of calculating the maximum amount 
of treasures we can take to each cell comes naturally. If not, our pedagogy involves being ready to 
give good hints. In this case, we usually present a complicated example on paper and ask the stu-
dents to solve it by hand, during which they most likely come up with the desired method. 

   0 
❖ 1    1    1    1    1 

   0    1 
❖ 2    2    2 ❖ 3 

❖ 1    1    2 ❖ 3 ❖ 4    4 

   1    1 ❖ 3 ❖ 4    4 ❖ 5 

❖ 2    2    3 
❖ 5    5    5 

❖ 3 ❖ 4 ❖ 5    5 
❖ 6    6 

Figure 2: A concrete example of calculating the most collectable treasures for each cell 

The formula which lies beneath this problem goes as follows: 

DP[i,j] = max(DP[i-1,j], DP[i,j-1]) + T[i,j] 

DP[i,0] = 0, DP[0,j] = 0 

(1) 

For practice, we use another “collect points on a grid” type exercise, M - Pontgyűjtő verseny (Point 
collecting contest), where the possible movements are different. As a reinforcement, we propose a 
similar, but a bit more difficult task, M - Benzin (Gasoline), which also includes constructing the 
optimal path. A quite hard task belonging to this group is CF - 429B. Working out, it can be used 
later to refresh the knowledge. We called this category PATH DP, expressing that we are usually 
searching for an optimal path to the destination. 

Starting a bit later, but parallel with this thread, we analyze simple two-player combinatorial games 
and construct optimal strategies by determining the winning and losing positions. This is also a 
great opportunity to start the exploration of this world offline, with actually playing some simple 
games and finding their winning strategy without a computer. 

A very basic problem is HR - Game of Stones, where two players take away 2, 3 or 5 stones from a 
pile in alternating turns, and the one unable to take, loses. The task is to tell who will win starting 
from various number of stones if both players play optimally. The problem could be generalized 
with different allowed moves. The solution programmatically comes down to deciding for every i 

number of stones increasingly, whether it is “good” to leave i stones, based upon that we know 

the previous answers. The notion of winning and losing states and their properties can be formu-
lated at this point. The formula here would look like this: 

DP[i] = not(DP[i-2] or DP[i-3] or DP[i-5]) 

DP at negative values treated as false 

(2) 

Our reinforcement task in this topic is a conceptually simple, but programmatically complex, two-
dimensional game played on the chessboard, HR - A Chessboard Game. In this game both players 
move one token taking turns, they can make the knight moves that decrease the sum of coordinates. 
With this, the dynamic programming nature of game analysis becomes clear, and students also face 
a problem, where the order of computing the DP table elements is not straightforward. If they 
have a firm understanding of recursion, we can show them the power of recursion with memori-
zation (called memoization). The below expression describes the computation in this task: 
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DP[i,j] = not(DP[i-2,j+1] or DP[i-2,j-1] or 

DP[i-1,j-2] or DP[i+1,j-2]) 

DP outside the table treated as false 

(3) 

 
Figure 3: The moves and winning fields of the chessboard game 

The synthesis problems for this module should occur much later, but we want to mention here 
that the task M - Fehér és Fekete korongok (White and Black Tokens). There is a row of white and black 
tokens in this game, a player in one move can take a token from either the beginning, or the end 
of the row, and both players have to maximize their white tokens. This task is a great opportunity 
to first come up with a solution that constructs a 2D array, where the problem itself involves only 
a sequence. Here the states of the game guide us to the 2D data structure, and this motif is very 
important in the more advanced tasks of the LCS DP module. 

There is an important connection with the Combinatorics module of this unit, namely that DP is 
often the method to solve a combinatorics problem. Calculating elements of the Pascal-triangle 
can be viewed as a DP task as well. An excellent problem involving a 1D array filling is M - Lépcsők 
(Stairs). The question is how many ways you can go up N stairs if you can take steps of at most K 
stairs. We suggest scheduling this task soon after the first DP problems, in parallel with other 
PATH DP tasks. The bottom-up nature of DP is very clearly visible, as we count the ways of 
reaching each stair in order. 

       34 7 

      24  6 

     13   5 

    7    4 

   4     3 

  2      2 

 1       1 

(1)        0 

Figure 4: The number of ways to reach each stair, with maximal step size K=3 

The formula of the solution is the first of this kind that doesn’t have a closed form: 

DP[i] = DP[i-1] + DP[i-2] + … + DP[i-K] 

DP[0] = 1, DP at negative values treated as 0 

(4) 

Besides DP, we plan to introduce recursion approximately at the same time, or just a little bit 
shifted. The close relation between these strategies should be enlightened and demonstrated thor-
oughly. The two topics running in parallel helps to strengthen their grounds. Furthermore, DP in 
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some cases can be more elegantly performed using recursion with memoization, particularly when 
the computing order is not trivial. 

4.3. Exploring the power of DP 

After feeling the taste of DP with problems where transitions are steps in a game-like scenario, the 
students will meet less obvious DP problems in different wrapping. We named this module Knap-
sack DP after the very representative Knapsack problem. 

We start with a similar, but much easier task, the Coin Change problem, where the question is what 
amounts of money can be paid using some set of banknotes (not asking for the minimum number 
of notes yet). It can be modeled with a single 1D boolean array, and deciding payability for each 
integer amount increasingly is an intuitive idea (programmatically very similar to HR - Game of 
Stones). With B[1..N] denoting the values of coins, we can formulate the solution as follows: 

DP[i] = DP[i-B[1]] or DP[i-B[2]] or … or 

DP[i-B[N]] 

DP[0] = true 

DP at negative values treated as false 

(5) 

Minimizing the number of notes is the next step and it is a representative example of greedy not 
working. The M - Bélyeg (Stamps) task is essentially this problem. 

The Knapsack problem, SPOJ - KNAPSACK has a special role in our DP curriculum, this is the 
first time when we use a non-trivial task decomposition with two variables. There are N items with 

different sizes and values, and we have to fit as much as we can into a backpack with size K. We 

calculate the maximum value for each backpack size when considering the inclusion of the items 
one by one. Here we present the underlying formula, where V[1..N] are the values, and 

S[1..N] are the sizes of the items: 

DP[i,j]= max(DP[i-1,j], DP[i-1,j-S[i]] + V[i]) 

DP[i,0] = 0, DP[0,j] = 0 

DP at negative values treated as -∞ 

(6) 

Many other real-life problems can be solved with this method. The two reinforcement tasks we 
suggest are such examples. In M - Munkagépek (Machines), distributing jobs between two machines 
can be reformulated to a special coin change problem. In the M - Vásár (Sale) problem, we have to 
maximize the profit of a merchant, and it can be reduced to a Knapsack problem. 

The knowledge of DP is essential in some graph algorithms in our third unit. Two very common 
shortest path algorithms, Bellman-Ford and Floyd-Warshall algorithms are two different DP solu-
tions to this problem. We can make use of this fact very well in our educational program, students 
who have very solid grounds in DP can discover Bellman-Ford and Floyd-Warshall themselves. 
To induce this, we can tell them to try finding the shortest paths with DP. If necessary, we can be 
more specific: in the case of Bellman-Ford: do a DP on the number of edges in the path. Floyd-
Warshall is much trickier, the DP is done on the vertices inside the path. An excellent task that can 
help with this discovery is CF - 295B. Greg and Graph. In our third unit problem set, there is another 
task which is a great synthesis of DP, combinatorics, and directed acyclic graphs (DAG): HR - 
Kingdom connectivity, in which you have to find the number of different ways to go between two 
vertices of a directed graph. 
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4.4. Advanced problems 

Since DP has so many applications, we keep on revisiting it with harder and harder tasks. It is not 
easy to categorize them, so we took two representative problems to symbolize these modules. 

To solve the Longest Common Subsequence problem, we create a 2D array, where each cell cor-
responds to the subproblem taking the first i and j elements of the two sequences. For sequences 

A and B, the dynamic programming goes as follows: 

DP[i,j] = max(DP[i-1,j], DP[i,j-1], 

DP[i-1,j-1]+1 if A[i]=B[j]) 

DP[i,0] = 0, DP[0,j] = 0 

(7) 

We included various other exercises where we see this or a similar pattern. There is M - Jelek (Signs), 
which is essentially the longest repeated substring problem that can be solved with DP in O(N2). 
In M - Rúd felvágás (Stick cutting), we are looking for the cheapest way of cutting up a stick to pieces. 
The solution to that problem is easier formulated with recursion, so it can be an example of mem-
oization. CF - 607B is about palindromic substrings and it requires a very good understanding of 
the pattern where the subproblems are ranges in some sequence. Here we would like to point out 
that previously we mentioned a problem, M - Fehér és fekete korongok, (White and Black Tokens), which 
falls also into this category and we included it in GAME DP because there the subproblems are 
states of a game, so it is a good precursor to this module. 

The Longest Increasing Subsequence (LIS) problem can be developed very well and there are nu-
merous nice exercises on this topic. The O(N2) solution is a good first step, but here we want to 
focus on reaching the O(N∙logN) solution combined with binary search. M - Konténeroszlopok (Con-
tainer Columns) is a greedy task that can be viewed as the dual problem of it: divide a sequence into 
a minimal number of decreasing subsequences. In the greedy process, the ordered nature of sub-
sequence endings can be observed, and the binary search is straightforward. What is not straight-
forward is that we calculate the length of the LIS too, which gives a lower bound for the result. 
This duality theorem also certifies that LIS is so beautiful that everyone should see. But we only 
uncover it after solving a task which can be reduced to finding the LIS: you have to build a tower 
using the maximum number of cubes, given some cubes with sizes and weights, and you can only 
place a smaller and lighter cube on top of another, M - Kockákból legmagasabb torony (Highest Tower of 
Cubes). Sorting by one property is the first idea, after that it comes down to computing the LIS. 
There is a very hard task in this topic, CF - 650D. Zip-line, in which a firm understanding of the 
above is necessary, but no advanced data structures. 

We call Bitmask DP the method when the subproblems we solve correspond to all subsets of a 
set. We usually represent a subset with a bit vector, that is usually stored in an integer. Transitions 
in this form of DP generally involve adding or removing one element of the subset, which can be 
done by bit manipulations, bitwise operators. An example problem would be M - Vásárlások (Pur-
chases), where we need to minimize the money spent on certain items, given their prices in different 
shops, with the constraint that we buy at most one item in each shop. The states of the DP, in this 
case, would be the K number of shops considered and the S subset of items bought so far. This 

type of DP can be connected to the inclusion-exclusion principle in some problems, for example 
CF - 102128B. Cake Tasting. 

We applied DP with binary search, DP on ranges and DP on subsets with bit manipulations in the 
modules above, and there are numerous other scenarios that we haven’t covered here. The topic 
of DP is very deep, there can be extremely difficult problems which are “only” DP. In our fifth 
unit, driven by data structures, we can see traces of DP in the construction step of many data 
structures (e.g. RMQ Sparse Table, Binary Indexed Tree, LPS table in KMP), so dynamic program-
ming is a core concept throughout our curriculum. In this chapter, we gave an overview of it, 
showing the possibility of developing deep knowledge over a long period and many exercises. 
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5. Conclusion 

In this paper, we described a possible curriculum for computer programming talent education in 
high schools. However, we consider it as work in progress, we will reflect on it and improve it 
based on experiences from putting it to practice. The main goal of the author’s research is to create 
a system for computer science talent education similar to the existing one in mathematics organized 
by The Joy of Thinking foundation [7]. The curriculum was designed to respect the principles of 
Lajos Pósa’s pedagogy in mathematics and is intended to form as a basis for our problem-based 
learning methodology in algorithmic programming. 
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