

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

Adopting Computer Science Pedagogical Patterns in
Developing and Enhancing Computational Thinking

Among Zero-Year Engineering Students

Loice Victorine ATIENO, TURCSÁNYI-SZABÓ Márta

Abstract Prospective undergraduate engineering students are assumed to possess Computational
Thinking (CT) skills through basic programming. They are thus required to have considerable
programming experience to enable them to execute tasks involving CT skills. Unfortunately, this is not
the case as existing studies demonstrate lack of these skills, leading to poor academic performance. This
was the case with first-year computer science international students at Eötvös Loránd University, faculty
of Informatics, prompting the management to seek the causes of poor academic performance among
the students and proper interventions. Two intervention courses were created to help develop and
enhance CT among the students – Introduction to Computational Thinking and Scratch Programming. Apart
from inculcating CT among learners, another underlying concern is that teachers are not keen to
embrace CT approaches in the classroom. This is attributed to lack of time in utilising machine
technology and lack of pedagogical skills. This was the case when the Scratch programming course was
first offered. Like teaching any other subject, CT teachers require a collection of pedagogical experiences
to enable effective CT teaching, including pedagogical patterns. Therefore, this paper demonstrates the
adoption of computer science (CS) pedagogical patterns in the designing and teaching Scratch
Programming course to zero-year students in the faculty to develop and enhance CT. The patterns were
established through a literature review and tested in a course designed for zero-year computer science
students for a period of 14 weeks. The patterns established through the literature review were deployed
in the development and delivery of the course. The survey was conducted to establish the effectiveness
of the tool. This formed part of preliminary results for the ongoing design research on integration of
CT in creative learning.

Keywords: Computational Thinking, Pedagogical Patterns, Computer Science Pedagogical Patterns,
Scratch Programming Course, Engineering Students

1. Introduction

Instituting computing and computational thinking (CT) in the school curriculum has triggered
excitements and challenges related to new subjects 1. This, therefore, necessitates the need for
teachers to adopt new suitable subject delivery pedagogies especially, those related to algorithms,
programming, and development of CT 2. Despite substantial efforts to improve the understanding
of CT, teaching CT for problem-solving is a new field for most teachers coupled with the
complexity of problem-solving arising from executing new subject matter 3. Teachers are also faced
with challenges resulting from existing and emerging learning designs resulting from new ideas
augmented by utilization of new technologies, with pedagogic theories and anecdotal explanations
of other’s practices being the only support available 4.

1 Sue Sentance and Andrew Csizmadia, ‘Computing in the Curriculum: Challenges and Strategies from a Teacher’s Perspective’,

Education and Information Technologies, 22.2 (2017), 469–95 <https://doi.org/10.1007/s10639-016-9482-0>.

2 Sentance and Csizmadia.

3 Judith A. Cooper and Kristin L. Gunckel, Teacher Perspectives of Teaching Computational Thinking (Baltimore, Maryland, 2019).

4 Diana Laurillard and Michael Derntl, ‘Learner Centred Design - Overview’, in Practical Design Patterns for Teaching and Learning with

Technology, Yishay Mor (Rotterdam, Boston: Sense Publishers, 2014), pp. 13–16.

Adopting Computer Science Pedagogical Patterns in Developing and Enhancing … 2

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

Implementing these theories and research can be challenging, hence the continuous research on
practical methods of sharing successful and commendable practice amongst educators 5. Numerous
studies have been conducted on strategies and approaches for engaging learners in CT, focusing
on creating new learning environments, tools, and activities that facilitate learning of CT 6.
Consequently, this has provoked the need for accessible, easy-to-use, and adaptable contextualised
models and representations 7. The representations and models (in form of case studies and learning
design patterns) are effective tools and resources that facilitate educators’ conceptualisation of
innovative and alternative learning methods, particularly in complex tasks 8. The critical question
is, can CS pedagogical design patterns be employed in developing and enhancing CT?

Therefore, this paper seeks to demonstrate how CS pedagogical patterns were adopted in the
development and implementation of a CT development course such as the Scratch programming
Course.

2. Computational Thinking

CT supports capability advancement while lessening computing limitations as it involves thinking
through problems and deploying the steps resulting to a solution 9. CT is open to all and not just
students of technology as it impacts learners’ attitudes towards problem solving, ensuring success
for the problem-solver. CT offers learners resources and aid for discovering new or distinctive
problem-solving techniques hence boosting their confidence in problem solving. Teachers need to
continually strive towards inculcating this sense of agency within their learners to shape their
capacity to manage themselves in and out of the classroom and in the future. To facilitate the
integration of CT, teachers’ support is also essential. Teaching CT has since been perceived as
mainly a constructionist idea 10.

According to constructionism, deep learning occurs when learners create their own purposeful
projects together with other learners then meticulously reflect on the process while enabling
freedom to explore their interests using technology 11. Based on the constructionist approach,

5 Robyn Philip, ‘Finding Creative Processes in Learning Design Patterns’, Australasian Journal of Educational Technology, 34.2 (2018),

78–94 <https://doi.org/10.14742/ajet.3787>.

6 Mitchel Resnick and others, ‘Scratch: Programming for All’, Communications of the ACM, 52.11 (2009)

<https://doi.org/10.1145/1592761.1592779>; Pratim Sengupta and others, ‘Integrating Computational Thinking with K-12

Science Education Using Agent- Based Computation : A Theoretical Framework’, Educ Inf Technol, 18 (2013), 351–80

<https://doi.org/10.1007/s10639-012-9240-x>.

7 Sue Bennett and others, ‘Learning Designs: Bridging the Gap between Theory and Practice’, in In ICT: Providing Choices for Learners

and Learning. Proceedings Ascilite Singapore 2007., 2007, pp. 51–60; Matt Bower, ‘Design Thinking and Learning Design’, in In Design

of Technology-Enhanced Learning Integrating (Bingley: Emerald Publishing., 2017), pp. 121–58; Peter Goodyear and Symeon Retalis,

‘Learning, Technology and Design’, in Technology-Enhanced Learning: Design Patterns and Pattern Languages, ed. by Peter Goodyear

and Symeon Retalis, 2nd edn (Rotterdam, Boston: Sense Publishers, 2010), pp. 1–27.

8 Philip.

9 J. M. Wing, ‘Computational Thinking’, Communications of the ACM, 49(3).March 2006 (2006), 33–35

<https://doi.org/10.1109/vlhcc.2011.6070404>.

10 Marina Umaschi Bers and others, ‘Computational Thinking and Tinkering : Exploration of an Early Childhood Robotics

Curriculum’, Computers & Education, 72 (2014), 145–57 <https://doi.org/10.1016/j.compedu.2013.10.020>; Alan Buss and

Ruben Gamboa, ‘Teacher Transformations in Developing Computational Thinking : Gaming and Robotics Use in After-School

Settings’, in Emerging Research, Practice, and Policy on Computational Thinking, ed. by P. J. Rich and C. B. Hodges, 2017, pp. 189–203

<https://doi.org/10.1007/978-3-319-52691-1>.

11 Bers and others.

Loice Victorine ATIENO, TURCSÁNYI-SZABÓ Márta 3

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

various CT instructional approaches and techniques have been identified that can be used at
different levels and across the curriculum 12. This includes teachers using CT to model their own
comprehension, learning, and progress (modelling) 13; Collaboration among teachers to accomplish
interdisciplinary projects (integration) 14; teachers releasing responsibility gradually; teachers
encouraging learners and giving tips and hints for problem-solving using probing questions rather
than giving real solutions 15; and using CT vocabulary across the curriculum 16. Apart from the CT
teaching approaches, teaching and learning in formal learning is structured. Various CT
development models have been proposed that stipulate the CT to be developed and the process of
CT development.

This is illustrated in “A model for developing computational thinking skills“ 17 using a three-staged problem-
solving cycle, dependent on CT to solve problems algorithmically: problem definition (problem
formulation, abstraction, problem reformulation, and decomposition); problem-solving (data
collection and analysis, algorithmic design, parallelization and iteration, and automation); and
analysing the solution (generalization, testing, and evaluation) as shown in figure 1. The problem-
solving process is a cycle starting from problem formulation and ending with evaluation of the
whole process. CT is viewed as a problem-solving approach that requires creativity and critical
thinking for the desired outcomes to be realised.

Despite the extensive research on the approaches, tools, and even activities for developing and
enhancing CT in the classroom, an underlying concern is that teachers are not keen to embrace CT
approaches in the classroom 18. This is attributed to a lack of time in utilising machine technology,
combined with the lack of pedagogical skills 19. Like teaching any other subject, CT teachers require
a collection of pedagogical experiences to enable effective CT teaching, including pedagogical
patterns.

12 Enoch Hunsaker, ‘Computational Thinking’, in The K-12 Educational Technology Handbook, ed. by A. Ottenbreit-Leftwich and R

Kimmons (EdTech Books, 2020), pp. 1–16 <https://edtechbooks.org/k12handbook/computational_thinking>; Abeera P

Rehmat, Hoda Ehsan, and Monica E Cardella, ‘Instructional Strategies to Promote Computational Thinking for Young Learners’,

Journal of Digital Learning in Teacher Education, 36.1 (2020), 46–62 <https://doi.org/10.1080/21532974.2019.1693942>.

13 Rehmat, Ehsan, and Cardella.

14 Bers and others.

15 Buss and Gamboa; Rehmat, Ehsan, and Cardella.

16 Aman Yadav and others, ‘Computational Thinking in Elementary and Secondary Teacher Education’, ACM Trans. Comput.

Education, 14.1 (2014), 16 <https://doi.org/http://dx.doi.org/10.1145/2576872 1.>; Hunsaker.

17 Tauno Palts and Margus Pedaste, ‘A Model for Developing Computational Thinking Skills’, Informatics in Education, 19.1 (2020),

113–28 <https://doi.org/10.15388/INFEDU.2020.06>.

18 Nur Hasheena Anuar, Fitri Suraya Mohamad, and Jacey-lynn Minoi, ‘Contextualising Computational Thinking : A Case Study in

Remote Rural Sarawak Borneo’, International Journal of LEarning, Teaching and Educational Research, 19.8 (2020), 98–116.

19 C. C. Selby, ‘How Can the Teaching of Programming Be Used to Enhance Computational Thinking Skills? (Doctoral Dissertation,

University of Southampton, England, United Kingdom). Https://Doi.Org/10.1016/j.Jsv.2010.04.020’ (University of

Southampton, England, United Kingdom), 2014) <https://doi.org/https://doi.org/10.1016/j.jsv.2010.04.020>.

Adopting Computer Science Pedagogical Patterns in Developing and Enhancing … 4

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

Figure 1: A model for developing computational thinking skills 20

3. Pedagogical Patterns

Pedagogical Pattern (a term coined by the Pedagogical Patterns Project Team) endeavours to depict
successful teaching practices to effectively share them with others as a means of learning from
them 21. Educational design has gained considerably from patterns especially in connection to:
presenting the teacher-designer with an elaborate set of design initiatives; presenting the design
ideas in a structured manner enabling understanding of relationships between design patterns;
merging a clear expression of a design problem and solution, and recommending a justification
which links pedagogical philosophy, research-based evidence and experiential knowledge of design;
and presenting the knowledge in a way that it facilitates an iterative, fluid, process of design,
extending over hours or days 22.

Pedagogical Patterns are not new ideas; rather, they are comprehensively tested and proven useful
practices in various contexts by numerous people hence, they are not something invented, instead
they are discovered 23. The underlying assertion backing this effort is the tried and tested problem-

20 Palts and Pedaste.

21 Eva Magnusson, ‘Pedagogical Patterns – a Method to Capture Best Practices in Teaching and Learning’, in Genombrottet Konferens

2006, 2006 <https://www.lth.se/fileadmin/lth/genombrottet/konferens2006/PedPatterns.pdf>.

22 Peter Goodyear, ‘Educational Design and Networked Learning: Patterns, Pattern Languages and Design Practice’, Australasian

Journal of Educational Technology, 21.1 (2005), 82–101 <https://doi.org/10.14742/ajet.1344>.

23 Magnusson.

Loice Victorine ATIENO, TURCSÁNYI-SZABÓ Márta 5

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

solving approaches to solving repeated challenges or tackling ordinary requirements created by
experienced educational practitioners 24.

A wide array of CS education pedagogical practices stem from teachers’ expertise. Novice teachers
find it hard and time-consuming to map these pedagogical practices to existing learning theories,
hence having the teachers depending on their insight or pedagogies observed while students 25. A
pattern poses a problem and its solution together with the forces that must be employed enabling
the solution suitable to the problem. The patterns seek to solve problems such as learner’s
motivation, choosing and sequencing teaching materials, evaluating students, among others. As the
call for integration of CT into the curriculum grows wider, teachers need not only models, but also
a collection of pedagogical patterns that can efficiently facilitate the development and enhancement
of CT among learners. This paper looks at how CS pedagogical patterns can be utilised by teacher
to develop and enhance CT in formal learning.

3.1 Computer Science Pedagogical Patterns

Patterns enable the design and delivery of a single course lasting one term or semester. Even though
the emphasis is on CS, the patterns may be utilised in other fields as they aim to capture good
practice in an organised manner, enabling their transfer to others, particularly to novice teachers 26.
The patterns include patterns for course preparation, course delivery, evaluation, feedback, among
others.

Patterns

Categories

Brief Description Sample Patterns

Course Development These patterns facilitate course
preparation and choosing the material.
They guide the comprehension of the
course itself and not its delivery

New Pedagogy for New Paradigms, Need to Know,
Abandon Systems, Early Bird, Spiral, Lazy

Professor.

Course delivery (whole
Course)

Guides the design on the organisation
of the material and deciding on
activities.

Early Bird, Spiral, Group Work, Lazy Professor,
Active Student, Buddy System, Language Reinforces
Paradigm, Write Over Read, General Concepts
First, Study Groups, Reduce Risk, Stealth
Instructor.

Course delivery (course or
major topics introduction)

The idea of these patterns has to do
with the first introduction of new
material. How can you introduce new
topics? What initial activities are
appropriate?

Set the Stage, Lay of the Land, Visible Plan, Learn
their Names, Fixer Upper, Occam, Read Before

Write, Consistent Metaphor, High Leverage.

24 Yishay Mor and Niall Winters, ‘Design Approaches in Technology Enhanced Learning’, Interactive Learning Environments, 15.1

(2007), 61–75 <https://doi.org/10.1080/10494820601044236>.

25 Mary Lou Maher and others, ‘Design Patterns for Active Learning’, in Faculty Experiences in Active Learning: A Collection of Strategies

for Implementing Active Learning Across Disciplines (University of North Carolina Press, 2020).

26 Joseph Bergin, ‘A Pattern Language for Course Development in Computer Science’, 2002

<http://csis.pace.edu/~bergin/patterns/coursepatternlanguage.html>.

Adopting Computer Science Pedagogical Patterns in Developing and Enhancing … 6

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

Course delivery (Evaluation

& Feedback)

These patterns cover testing and

student evaluation.

Fair Grading, Fair Project Grading, Fair Team
Grading, Key Ideas Dominate Grading, Student
Online Portfolios, Grade it Again Sam, Students
Selected Activities, Trial Exam, Self-Test, Debrief

After Activities, Peer Feedback.

Communication: Rule of 1-Rule of 2, 24 by 7,
Constant Feedback, Differentiated Feedback, Early
Warning, Anonymous Mailbox, Ask Your
Neighbour.

Course delivery (Dealing
with problems)

Problems always occur in running any
course. These patterns give some
advice about being prepared for the

inevitable.

Buffers, Prepare Equipment, Let the Plan Go,
Debrief, Human Professor, Capture Everything.

Table 1: Sample Computer Science Pedagogical Patterns 27

3.2 Pedagogical Patterns in Teaching Computational Thinking

Palts and Pedaste in “A model for developing computational thinking skills” 28, outline three stages of CT
development, with each stage outlining the key tasks to be carried out: problem definition (problem
formulation, abstraction, problem reformulation, and decomposition); problem solving (data
collection and analysis, algorithmic design, parallelization and iteration and automation); and
analysing the solution (generalization, testing and evaluation).

Problem definition: constitute all the CT skills that are needed before starting to solve a problem.
Problem-solving begins with (a) problem formulation, which is realised by researching in order to
understand the problem to be solved. This is followed by (b) abstraction as definition of key ideas
through identifying and extracting relevant information is vital in formulating the problem. The
key aspects realised during abstraction are then modelled. There is then need to (c) reformulate the
problem into a familiar and solvable one. Lastly, the problem is (d) decomposed into manageable tasks.

Problem solving: This is the second stage based on the model and constitute all CT skills
implicated in crafting the problem solution. Algorithmic problem solving requires (e) data collection
and analysis followed by (f) algorithmic design which is a series of ordered steps then deployment of (g)
parallelization and iteration leading to the process (h) automation.

Analysing the solution: This involves (j) generalization, which is applying the problem-solving
process to a broader array of problems. The last task is (j) evaluation and testing, involving processes’
outcomes analysis (assessment and acknowledgment) based on efficiency and resource utilization.
This also entail systematic testing and debugging, efficiency and performance constraints, error
detection, among others. In formal learning, the above tasks can therefore be accomplished is a
structured manner, as depicted in the flowchart in Figure 2.

To enable the learners to successfully accomplish these tasks, teaching CT requires a selection of
various teaching approaches 29. There are moments teacher-centred approaches are useful in
introducing concepts and model capabilities; nevertheless, learner-centred pedagogies are
paramount for learners of computing to fuse their understanding, knowledge transfer, creativity

27 Bergin.

28 Palts and Pedaste.

29 Mark Guzdial, ‘Education: Paving the Way for Computational Thinking’, Communications of the ACM, 2008, 25–27

<https://doi.org/10.1145/1378704.1378713>.

Loice Victorine ATIENO, TURCSÁNYI-SZABÓ Márta 7

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

development, and facilitate peer learning 30. Continued professional development should enhance
teachers’ CT pedagogies and adaptation approaches based on student needs 31. Unfortunately, there
is no consensus on strategies for teaching and assessing the level of CT development in learners 32.
Complete integration of CT into the existing curricula unquestionably poses significant challenges,
particularly for teachers, as they may not be able to determine suitable pedagogies for teaching CT
33. This is evident in the concern relayed by experts regarding the shortage of qualified teachers for
the new curriculum delivery, especially when introducing new ideas and concepts 34. Therefore, this
calls for the need for experts’ documented experience to inform of pedagogical patterns in
enhancing teachers’ capability in teaching CT.

Figure 2: Flowchart Depicting the Process of Problem Solving with CT (Source: Author)

30 Matt Bower, ‘Redesigning a Web-Conferencing Environment to Scaffold Computing Students ’ Creative Design Processes’,

Journal of Educational Technology & Society, 14.1 (2011), 27–42; Matt Bower and John G. Hedberg, ‘A Quantitative Multimodal

Discourse Analysis of Teaching and Learning in a Web-Conferencing Environment - The Efficacy of Student-Centred Learning

Designs’, Computers and Education, 54.2 (2010), 462–78 <https://doi.org/10.1016/j.compedu.2009.08.030>.

31 Tara Stevens and others, ‘Middle Level Mathematics Teachers’ Self-Efficacy Growth through Professional Development:

Differences Based on Mathematical Background’, Australian Journal of Teacher Education, 38.4 (2013)

<https://doi.org/10.14221/ajte.2013v38n4.3>.

32 Karen Brennan and Mitchel Resnick, ‘New Frameworks for Studying and Assessing the Development of Computational

Thinking’, AERA, 2012, 1–25 <http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf> [accessed 10 May 2019].

33 Matt Bower and others, ‘Improving the Computational Thinking Pedagogical Capabilities of School Teachers’, Australian Journal

of Teacher Education, 42.3 (2017), 53–72 <hhttp://files.eric.ed.gov/fulltext/EJ1137876.pdf>.

34 Wen J. Peng and others, ‘Emerging Perceptions of Teacher Quality and Teacher Development in China’, International Journal of

Educational Development, 34.1 (2014), 77–89 <https://doi.org/10.1016/j.ijedudev.2013.04.005>.

Adopting Computer Science Pedagogical Patterns in Developing and Enhancing … 8

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

The patterns comprise of the context (where the pattern is applied), problem (problems to be
solved), constraints and forces (what necessitate the application of the problem), and solutions
(solution to the problem). The overall pattern here is the development and teaching of Scratch
programming course

Context: Pedagogical patterns are applicable to courses or programs with complex tasks and
ambitious goals and are beneficial to novice teachers 35. In this case, Scratch programming course
was offered to students with a vast background, had basic or no programming knowledge, and
required CT skills to advance their studies in computer science engineering.

Problem: There is an assumption that students joining engineering courses at the undergraduate
level possess CT skills through basic programming skills. Thus, they are expected to have
considerable programming knowledge that would enable them execute projects that require CT
skills. Unfortunately, existing studies conducted among undergraduate students exhibit lack of
these skills 36, leading to poor academic performance. This has made entry-level courses complex
for these students as they lack adequate programming knowledge (or background) as per the course
prerequisites. The Scratch programming course students were international students from different
countries with varied education systems; hence, their background, experience, and motivation are
widely divergent. This made the harmonisation of student learning progress difficult, resulting to
the increase in the complexity and difficulty of teaching the course. To attain the eventual goal of
the course, there is need for a pedagogical method that is not only able to draw students’ interest
but also to keep this interest during the entire period of the course hence the adoption of the
existing pedagogical patterns.

Forces: Teaching CT calls for the balance between teacher-centred and student-centred
approaches to learning. When designing the course content and the activities for the course, the
teacher has to have in mind how the two approaches can be balanced for effective learning to
occur. The Scratch programming Course consisted of several activities to be carried out by learners.
In case of complex activities scaffolding was used to achieve the desired goal.

Solutions: Developing CT in formal learning environment like a university setup is structured and
this is best elaborated by “A model for developing computational thinking skills” 37. CT development in
such an environment is teacher guided; nevertheless, the utilization of learner-centred pedagogies
are vital for learners to fuse their understanding, knowledge transfer, creativity development and
facilitate peer learning 38. To enhance the acquisition of CT in such an environment, various
pedagogical patterns are adopted during CT development. The successful completion of each
activity in CT development is evaluated, leading to the ultimate learning goal.

35 Zhen Jiang, Eduardo B. Fernandez, and Liang Cheng, ‘P2N : A Pedagogical Pattern for Teaching Computer Programming to

Non-CS Majors’, in PLoP ’11 Proceedings of the 18th Conference on Pattern Languages of Programs Retrieved From, 2011.

36 Gábor Csapó, ‘Placing Event-Action-Based Visual Programming in the Process of Computer Science Education’, Acta Polytechnica

Hungarica, 16.2 (2019), 35–57; Mária Csernoch and others, ‘Testing Algorithmic Skills in Traditional and Non-Traditional

Programming Environments’, Informatics in Education, 14.2 (2015), 175–97 <https://doi.org/10.15388/infedu.2015.11>.

37 Palts and Pedaste.

38 Bower, ‘Redesigning a Web-Conferencing Environment to Scaffold Computing Students ’ Creative Design Processes’; Bower

and Hedberg.

Loice Victorine ATIENO, TURCSÁNYI-SZABÓ Márta 9

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

In the Scratch Programming course, the development of CT was done using different learning
themes. Various activities were carried out, which included lecturing, group discussion, teacher-led
class discussions, project development, peer reviewing, reflections and evaluation. Our solution
focused on the achievement of the overall goal which is to develop and enhance CT among
learners.

3.3 Sample Implementation of the Patterns in Teaching Scratch Programming Course

Course Development: The course content was developed in themes, as shown in Table 2 adopted
from creative computing with scratch curriculum 39, scaled down to meet our requirements. The
learners were expected to come up with their own projects based on the themes provided.

Topic Description Required
Sessions

Introduction to Scratch Introducing creativity in computing and Scratch using sample projects and
hands-on experiences.

4

Exploring Arts Exploring arts by creating projects that include elements of music, drawing and

dance.
4

Digital Stories Telling Exploring storytelling by creating projects that include characters, scenes and

narrative.
4

Developing Games Exploring games by creating projects that define goals, levels and rules 6

Final project Developing independent projects by first identifying the suitable project,
utilising problem solving with CT, collaborating with others to improve the

project and presenting the project and its development process.

8

Table 2: Course Themes

Various CS pedagogical patterns were used as a guide in developing the Scratch programming
course with some of the sample patterns described below. According to Bergin 40, there is need for
patterns that can facilitate course preparation and choosing of the materials to be taught. This is
basically about the course and not its delivery. While developing the CT course, there was Need
to Know the content and the emphasis given to each topic. This is important as some topics are
more challenging, longer or even more interesting than others. The Scratch programming course
was structured in a thematic manner that gave the learners a range of projects to work on. This
also calls for structuring the content to enable proper content completion. Essential ideas in the
course were mined and placed first in the course structure hence the Early Bird. Spiral was
necessary during the course development to attain the necessary information on the important
topics. This was a practical course with several projects to be accomplished with limited time
available. Therefore, it was important to plan the activities aiming at what the learners were to do
and not what the teacher would do, hence Lazy Professor. The Abandoned Systems approach
was adopted that allowed materials selection and methodologies that enable learners’ improvement
on various fronts, resulting in solving new and meaningful problems. For novice teachers, teaching

39 Karen Brennan, Michelle Chung, and Jeff Hawson, ‘Creative Computing: A Design-Based Introduction to Computational

Thinking’, Nature, 2011, 73 <http://scratched.gse.harvard.edu/sites/default/files/curriculumguide-v20110923.pdf>.

40 Bergin.

Adopting Computer Science Pedagogical Patterns in Developing and Enhancing … 10

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

something new can be challenging hence need to adopt New Pedagogy for New Paradigms that
advocates for use of different pedagogy, not just different examples, to teach the new concept.

Course delivery:Design-based learning approach was used to deliver the course content. The
design-based learning approach is a method known for involving learners in solving real-life design
problems as they reflect on the process of learning 41. It is characterized with: the creation of
artifacts, personalization of the creations, collaboration and reflection 42 which form the core of
our learning process. For each theme, the students were introduced to the new concepts, and they
were expected to create projects that would help develop and enhance CT among them.

Organising the course materials and activities: In most courses there is more to be taught and less time
available and this was the case with the Scratch programming course that expected students to
master various CT skills and dispositions within a period of 12 weeks. Teachers are therefore
advised to use examples and exercises that cover more than one idea or topic simultaneously, hence
Multi Pronged Attack. The course used design-based approach to learning where students were
expected to develop projects. The approach was also supported by the Active Student pattern as
each project developed covered various ideas and concepts that needed to be mastered. The
development of projects kept the students active both in and out of class. The course was
structured into themes and the learners’ given opportunities to come up with their own projects
within the themes (Students Selected Activities).
Introducing the course or new topic: Set the Stage when introducing new topics and at the beginning of
the course to get the learners’ attention and make sure all are ready to learn. This was done by
naming the topic for emphasis and reinforcement; reviewing prerequisites; and showing the target
using the learning objectives. A Lay of the Land provided a dramatic picture of the target. A
Visible Plan about the course was created and shared with the students at the beginning of the
course.

Evaluation and feedback: Students were provided with constant Feedback to enable the students
establish their understanding of what was taught. Positive Feedback First was used as criticisms
help the students enhance the criticized facets and should be given in time as it can significantly
increase motivation 43. To ensure students have understood the topic, they were given a chance
to try what had been taught on their own (Try it Yourself). The students were also encouraged
to be less dependent on the teacher through the use of Student Portfolio and Peer Grading.
To ensure fair grading Key Ideas Dominate Grading was used and this was made possible
using rubrics. Lastly, Anonymous Feedback was solicited using questionnaires on the
effectiveness of the teaching style.

Dealing with problems: when students breeched the classroom code of conduct instead of punishing
them, the vice was turned into a learning activity (Human Professor) for example if they missed
lessons, they were given activities to accomplish that will cover the lesson taught in their absence.

41 Mehalik and Schunn, ‘What Constitutes Good Design? A Review of Empirical Studies of Design Processes’, International Journal

of Engineering Education, 22.3 (2006), 519–32.

42 Brennan, Chung, and Hawson.

43 Bergin.

Loice Victorine ATIENO, TURCSÁNYI-SZABÓ Márta 11

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

Implication: By adopting CS pedagogical patterns in teaching Scratch programming course, the
major conclusion of the work is that the existing pedagogical patterns can be used in teaching new
courses. This was evident in how the learners improved in various areas, such as their motivation
towards the course, persistence in dealing with complex tasks, managing individual and group
learning, and embracing feedback.

Figure3: Effectiveness of Peer Review

Figure 4: Building Student Confidence (Author)

Figures 3 and 4 shown the effectiveness of the design patterns on the learning outcome that has
led to the development of CT. The patterns also helped in the selection of various learning
activities, giving the learners a wide range of activities to select from (Figure 5), with most
students preferring group activities. According to constructionism, deep learning occurs when
learners create their own purposeful projects together with other learners then meticulously
reflect on the process while enabling freedom to explore their own interests using technology 44.
The course was rated highly by the students (Figure 6). The sample results demonstrate the
successful use of the patterns in the selected course and this can be applied in any other course.

44 Bers and others.

23

4

0 5 10 15 20 25

YES

NO

No. of Students

R
e

sp
o

n
se

s

Peer Review

27

0

0 5 10 15 20 25 30

YES

NO

No. of Students

R
e

sp
o

n
se

Building Confidence

Adopting Computer Science Pedagogical Patterns in Developing and Enhancing … 12

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

Figure 5: Learners’ preference of activities (Author)

Figure 6: Overall effectiveness of the course (Author)

5. Conclusion and Recommendations

The goal of this paper was to share how various CS pedagogical patterns were used in the
implementation of Scratching programming course to effectively develop and enhance CT among
the learners in formal learning. Designing the course and eventually delivering it was guided by
some of the sample pedagogical patterns outlined in section 2.3. Adopting the pedagogical patterns
has led to the successful development of the course and its delivery. The research therefore
advocates for the adoption of pedagogical patterns more so by novice teachers and enhancement
of the patterns to enable development of CT in informal learning too. The patterns are also crucial
in the in effective teaching of new courses should therefore be part of the teacher’s tools for
teaching.

23

22

23

21

20

4

22

0 5 10 15 20 25

WORKING IN GROUP PROJECTS

PEER REVIEWING

DISCUSSING PROBLEM SOLUTIONS WITH
PEERS

SEEKING HELP FROM PEERS

TAKING CRITICISM FROM OTHERS POSITIVELY

WORKING INDIVIDUALLY

CONTRIBUTING TOWARDS PROJECT
DEVELOPMENT

No. of Students

A
ct

iv
it

ie
s

Class Activities

20

7

YES

MAY BE

No. of Students

R
e

sp
o

n
se

Success of the Course

Loice Victorine ATIENO, TURCSÁNYI-SZABÓ Márta 13

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

References

1. N. H. Anuar, F. S. Mohamad, and J. Minoi: Contextualising Computational Thinking : A Case
Study in Remote Rural Sarawak Borneo, International Journal of LEarning, Teaching and
Educational Research, 19.8 (2020), 98–116. https://doi.org/10.26803/ijlter.19.8.6

2. S.Bennett, S. Agostinho, L. Lockyer, L. Kosta, J. Jones, R. Koper, and B. Harper: Learning
Designs: Bridging the Gap between Theory and Practice, in In ICT: Providing Choices for Learners
and Learning. Proceedings Ascilite Singapore (2007), pp. 51–60

3. J. Bergin: A Pattern Language for Course Development in Computer Science, (2002)
http://csis.pace.edu/~bergin/patterns/coursepatternlanguage.html [Accessed on 15th
March 2021]

4. M. U. Bers, , L. Flannery, E. R. Kazakoff, and A. Sullivan: Computational Thinking and

Tinkering : Exploration of an Early Childhood Robotics Curriculum, Computers & Education, 72
(2014), 145–57 https://doi.org/10.1016/j.compedu.2013.10.020

5. M. Bower: Design Thinking and Learning Design, in In Design of Technology-Enhanced
Learning Integrating, Bingley, Emerald Publishing, (2017), pp. 121–58
https://doi.org/10.1108/978-1-78714-182-720171008

6. M. Bower: Redesigning a Web-Conferencing Environment to Scaffold Computing Students ’ Creative
Design Processes, Journal of Educational Technology & Society, 14.1 (2011), 27–42

7. M. Bower and J. G. Hedberg: A Quantitative Multimodal Discourse Analysis of Teaching and
Learning in a Web-Conferencing Environment - The Efficacy of Student-Centred Learning Designs,
Computers and Education, 54.2 (2010), 462–78
https://doi.org/10.1016/j.compedu.2009.08.030

8. M. Bower, L. N. Wood, J. W. M. Lai, C. Howe, R. Lister, R. Mason, K. Highfield and J.
Veal: Improving the Computational Thinking Pedagogical Capabilities of School Teachers, Australian
Journal of Teacher Education, 42.3 (2017), 53–72
http://files.eric.ed.gov/fulltext/EJ1137876.pdf [Accessed on 2nd February 2021]
https://doi.org/10.14221/ajte.2017v42n3.4

9. K. Brennan, , M. Chung, and J. Hawson, ‘Creative Computing: A Design-Based Introduction to
Computational Thinking, Nature, (2011)
http://scratched.gse.harvard.edu/sites/default/files/curriculumguide-v20110923.pdf

10. K. Brennan, , and M. Resnick: New Frameworks for Studying and Assessing the Development of
Computational Thinking, AERA, (2012), 1–25
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf [Accessed on 19th March 2021]

11. A. Buss and R. Gamboa: Teacher Transformations in Developing Computational Thinking : Gaming
and Robotics Use in After-School Settings, in Emerging Research, Practice, and Policy on
Computational Thinking, ed. by P. J. Rich and C. B. Hodges, (2017), pp. 189–203
https://doi.org/10.1007/978-3-319-52691-1

12. J. A. Cooper and K. L. Gunckel: Teacher Perspectives of Teaching Computational Thinking,
Baltimore, Maryland, (2019)

13. G. Csapó: Placing Event-Action-Based Visual Programming in the Process of Computer Science
Education, Acta Polytechnica Hungarica, 16.2 (2019), 35–57
https://doi.org/10.12700/APH.16.2.2019.2.3

14. M. Csernoch, , P. Biró, J. Máth, and K. Abari: Testing Algorithmic Skills in Traditional and Non-
Traditional Programming Environments, Informatics in Education, 14.2 (2015), 175–97,
https://doi.org/10.15388/infedu.2015.11

15. P. Goodyear: Educational Design and Networked Learning: Patterns, Pattern Languages and Design
Practice, Australasian Journal of Educational Technology, 21.1 (2005), 82–101,

https://doi.org/10.26803/ijlter.19.8.6
http://csis.pace.edu/~bergin/patterns/coursepatternlanguage.html
https://doi.org/10.1016/j.compedu.2013.10.020
https://doi.org/10.1108/978-1-78714-182-720171008
https://doi.org/10.1016/j.compedu.2009.08.030
http://files.eric.ed.gov/fulltext/EJ1137876.pdf
https://doi.org/10.14221/ajte.2017v42n3.4
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.1007/978-3-319-52691-1
https://doi.org/10.12700/APH.16.2.2019.2.3
https://doi.org/10.15388/infedu.2015.11

Adopting Computer Science Pedagogical Patterns in Developing and Enhancing … 14

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

https://doi.org/10.14742/ajet.1344
16. P. Goodyear and S. Retalis: Learning, Technology and Design, in Technology-Enhanced

Learning: Design Patterns and Pattern Languages, ed. by Peter Goodyear and Symeon
Retalis, 2nd edn, Rotterdam, Boston, Sense Publishers, (2010), pp. 1–27

17. M. Guzdial: Education: Paving the Way for Computational Thinking, Communications of the
ACM, (2008), 25–27, https://doi.org/10.1145/1378704.1378713

18. E. Hunsaker: Computational Thinking, in The K-12 Educational Technology Handbook, ed.
by A. Ottenbreit-Leftwich and R Kimmons, EdTech Books, (2020), pp. 1–16,
https://edtechbooks.org/k12handbook/computational_thinking [Accessed on 20th July
2021]

19. Z. Jiang, E. B. Fernandez, and L. Cheng: P2N : A Pedagogical Pattern for Teaching Computer
Programming to Non-CS Majors, in PLoP ’11 Proceedings of the 18th Conference on Pattern
Languages of Programs, (2011) https://doi.org/10.1145/2578903.2579163

20. D. Laurillard and M. Derntl: Learner Centred Design - Overview, in Practical Design Patterns
for Teaching and Learning with Technology, Yishay Mor, Rotterdam, Boston, Sense
Publishers, (2014), pp. 13–16 https://doi.org/10.1007/978-94-6209-530-4_2

21. E. Magnusson: Pedagogical Patterns – a Method to Capture Best Practices in Teaching and Learning,
in Genombrottet Konferens, (2006)
https://www.lth.se/fileadmin/lth/genombrottet/konferens2006/PedPatterns.pdf
[Accessed on 18th July 2021]

22. M. L. Maher, , N. Dehbozorgi, M. Dorodchi, S. Macneil, and S. Diego: Design Patterns for
Active Learning, in Faculty Experiences in Active Learning: A Collection of Strategies for
Implementing Active Learning Across Disciplines, University of North Carolina Press,
(2020)

23. Mehalik, and Schunn: What Constitutes Good Design? A Review of Empirical Studies of Design
Processes, International Journal of Engineering Education, 22.3 (2006), 519–32

24. Y. Mor and N. Winters: Design Approaches in Technology Enhanced Learning, Interactive
Learning Environments, 15.1 (2007), 61–75 https://doi.org/10.1080/10494820601044236

25. T. Palts, , and M. Pedaste: A Model for Developing Computational Thinking Skills, Informatics in
Education, 19.1 (2020), 113–28 https://doi.org/10.15388/INFEDU.2020.06

26. W. J. Peng, E. McNess, S. Thomas, X. R. Wu, C. Zhang, J. Z. Li, and H. S. Tian: Emerging
Perceptions of Teacher Quality and Teacher Development in China, International Journal of
Educational Development, 34.1 (2014), 77–89
https://doi.org/10.1016/j.ijedudev.2013.04.005

27. R. Philip: Finding Creative Processes in Learning Design Patterns, Australasian Journal of
Educational Technology, 34.2 (2018), 78–94 https://doi.org/10.14742/ajet.3787

28. A. P. Rehmat, E. Hoda and M. E. Cardella: Instructional Strategies to Promote Computational
Thinking for Young Learners, Journal of Digital Learning in Teacher Education, 36.1 (2020),
46–62 https://doi.org/10.1080/21532974.2019.1693942

29. M. Resnick, , J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, E.
Rosenbaum, J. Silver, B. Silverman and Y. Kafai: Scratch: Programming for All,
Communications of the ACM, 52.11 (2009) https://doi.org/10.1145/1592761.1592779

30. C. C. Selby: How Can the Teaching of Programming Be Used to Enhance Computational Thinking
Skills?, Doctoral Dissertation, University of Southampton, England, United Kingdom,
(2014)
https://www.researchgate.net/publication/299464834_How_can_the_teaching_of_progra
mming_be_used_to_enhance_computational_thinking_skills [Accessed on 8th August
2021]

https://doi.org/10.14742/ajet.1344
https://doi.org/10.1145/1378704.1378713
https://edtechbooks.org/k12handbook/computational_thinking
https://doi.org/10.1145/2578903.2579163
https://doi.org/10.1007/978-94-6209-530-4_2
https://www.lth.se/fileadmin/lth/genombrottet/konferens2006/PedPatterns.pdf
https://doi.org/10.1080/10494820601044236
https://doi.org/10.15388/INFEDU.2020.06
https://doi.org/10.1016/j.ijedudev.2013.04.005
https://doi.org/10.14742/ajet.3787
https://doi.org/10.1080/21532974.2019.1693942
https://doi.org/10.1145/1592761.1592779
https://www.researchgate.net/publication/299464834_How_can_the_teaching_of_programming_be_used_to_enhance_computational_thinking_skills
https://www.researchgate.net/publication/299464834_How_can_the_teaching_of_programming_be_used_to_enhance_computational_thinking_skills

Loice Victorine ATIENO, TURCSÁNYI-SZABÓ Márta 15

Central-European Journal of New Technologies in Research, Education and Practice
Volume 4, Number 1, 2022.

31. P. Sengupta, , J. S. Kinnebrew, S. Basu, G. Biswas, and D. Clark: Integrating Computational

Thinking with K-12 Science Education Using Agent- Based Computation : A Theoretical Framework,
Educ Inf Technol, 18 (2013), 351–80 https://doi.org/10.1007/s10639-012-9240-x

32. S. Sentance, and A. Csizmadia: Computing in the Curriculum: Challenges and Strategies from a
Teacher’s Perspective, Education and Information Technologies, 22.2 (2017), 469–95,
https://doi.org/10.1007/s10639-016-9482-0

33. T. Stevens, Z. Aguirre-Munoz, G. Harris, R. Higgins, and X. Liu: Middle Level Mathematics
Teachers’ Self-Efficacy Growth through Professional Development: Differences Based on Mathematical
Background, Australian Journal of Teacher Education, 38.4 (2013)
https://doi.org/10.14221/ajte.2013v38n4.3

34. J. M. Wing: Computational Thinking, Communications of the ACM, 49(3), (2006), 33–35
https://doi.org/10.1109/vlhcc.2011.6070404

35. A. Yadav, C. Mayfield, N. Zhou, S. Hambrusch, and T. J. Korb: Computational Thinking in
Elementary and Secondary Teacher Education, ACM Trans. Comput. Education, 14.1 (2014), 16
https://dl.acm.org/doi/10.1145/2576872. https://doi.org/10.1145/2576872

Authors About this document

Loice Victorine ATIENO
Eötvös Loránd University
e-mail: atienomunira04@gmail.com

TURCSÁNYI-SZABÓ Márta
Eötvös Loránd University
e-mail: tszmarta@inf.elte.hu

Published in:

CENTRAL-EUROPEAN JOURNAL OF
NEW TECHNOLOGIES IN RESEARCH,
EDUCATION AND PRACTICE

Volume 4, Number 1. 2022.

ISSN: 2676-9425 (online)

DOI:

10.36427/CEJNTREP.4.1.2963

License

Copyright © Loice Victorine ATIENO, TURCSÁNYI-SZABÓ Márta

Licensee CENTRAL-EUROPEAN JOURNAL OF NEW TECHNOLOGIES IN
RESEARCH, EDUCATION AND PRACTICE, Hungary. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY)
license.

http://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1007/s10639-012-9240-x
https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.14221/ajte.2013v38n4.3
https://doi.org/10.1109/vlhcc.2011.6070404
https://dl.acm.org/doi/10.1145/2576872
https://doi.org/10.1145/2576872
mailto:atienomunira04@gmail.com
mailto:tszmarta@inf.elte.hu
http://creativecommons.org/licenses/by/4.0/

