
ENGINEERING AND IT SOLUTIONS II. 2020.

PRIME HUNTING

Gábor Farkasa* , Zsombor Kissb , Dániel Papatyib , Krisztina Schäfferb

a ELTE, Faculty of Informatics, Department of Computer Algebra, associate professor
b ELTE, Computer Scientist BSc, II. year

ABSTRACT

“Prime hunting” can be considered as a research area of computational number theory. Its goal is to
find special combinations of integers and prove their primality. Four research groups, established by
A. Járai between 1992 and 2014, published numerous world class scientific results. In this period, due
to Járai’s arithmetic routines fastest in the world, they reached the world record 19 times, namely
found the largest known twin primes 9 times, Sophie Germain primes 7 times, a prime of the form
n4 + 1, a number which is simultaneously twin and Sophie Germain prime and the three largest
known primes forming a Cunningham chain of length 3 of the first kind. When A. Járai retired,
the investigations of this area were suspended. In the beginning of 2020 the research was reopened
by G. Farkas at the newly-founded campus (Szombathely) of ELTE. The first signal success came
in the end of May 2020. They proved the primality of the numbers which form the largest known
Cunningham chains of length 2 of the 2nd kind. In this paper we report on a newly started prime
hunting project with the aim of increasing our students’ research activity.
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1. Introduction

A well-organized collection of large prime numbers was started in 1984 when the name “Titanic
Prime” was given to the primes with more than 1000 decimal digits by S. Yates [1]. We can say that
a contest started for primes categorized by their “archivable” form. The exact definition of archivable
form can be found on the site [2] which is supervised by C. K. Caldwell since 1996. For example,
twin, Sophie Germain and Mersenne are well-known archivable forms. On Caldwell’s site a top list
can be seen for each form which contains the largest known primes in that category.
Reading about a world record prime, a question always arises as to why people want to find these

numbers. In our point of view there are many reasons, for example knowing the newest scientific
results and methods, designing and developing fast and effective programs, testing the hardware and
continuing a beautiful tradition. From ≈ 300 BC to 2020 numerous famous mathematicians became
“large prime collectors”, for example Euclid, Descartes, Fermat, Mersenne, Leibniz, Euler, Lucas,
Catalan, Cunningham, Pepin, Putnam, Lehmer and Járai.

2. Prime tests

A prime hunting process can be divided into two main parts, namely the sieving and primality
checking. In this chapter we focus our attention to the theoretical background of prime tests.
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2.1. Conclusive Prime Tests

Deciding whether a given number n is prime or not, is a problem that has interested mathematicians
for ages. The oldest algorithm is more than 2500 years old, aptly called trial division, it simply
checks if any number smaller than n divides it or not. The algorithm can be improved by noticing
that one only needs to check for prime divisors less or equal than

√
n, however this is still extremely

slow. Trial division, combined with other more efficient methods, is still used to this day for testing
whether a number has small prime factors [3].
There are much faster modern algorithms – such as the AKS primality test – that is proven to run

in polynomial time and ECPP, which can be proven to also run in polynomial time contingent on
some conjectures [3]. Significantly better running times can be achieved with simpler algorithms if
we only consider numbers of special forms. Two such tests are the Reisel test and the Proth test.

Proth test

The Proth test is a primality test for numbers of the form N = k · 2n + 1, where k is odd and
2n > k. These numbers are known as Proth numbers. The algorithm is based on the following
theorem published in 1878 [4]:
Theorem 2.1 (Proth’s theorem) Let N be as described above, if there exists an integer a such that

a(N−1)/2 ≡ −1 (mod N),

then N is prime.
There is no efficient strategy to find such an a, therefore the test’s running time varies randomly.

Riesel test

Let N = h · 2n− 1, such that 2 ≤ n ∈ N, 2n > h ∈ Z+ is odd, D > 1 a square-free positive integer,
a, b ∈ Z, r = |a2 − b2D|, α = (a + b

√
D)2/r ∈ ID the ring of algebraic integers (quadratic integers)

of the quadratic field of Q(
√
D), furthermore suppose that:(

D

N

)
= −1, (1)

( r
N

)
(a2 − b2D)/r = −1, (2)

where
(
D

N

)
is the Jacobi symbol, which is an extension of the Legendre symbol. Let m be an

integer, p a prime, then the Legendre symbol is defined as:

(
m

p

)
=


0 if p | m,
1 if p - m and x2 ≡ m (mod p) has a solution,
−1 if p - m and x2 ≡ m (mod p) has no solution.

The Jacobi symbol is the unique extension of the Legendre symbol to all positive odd integers
n = b · c with the multiplicative property:(m

n

)
=
(m
b

)
·
(m
c

)
.
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Now, we can formulate Riesel’s famous assertion:
Theorem 2.2 Suppose the above conditions hold, then N is prime if and only if

un−2 = αh2n−2

+ α−h2n−2 ≡ 0 (mod N),

where u0 = αh + α−h and ui = u2i−1 − 2.
H. Riesel published the proof in [5]. We show an example where we set D = 13, a = 3, and b = 1

as hyperparameters. Using a method described in [6] we can always find values h for which Eq. (1)
holds. Eq. (2) always holds because r = 4, so( r

N

)
=

(
22

N

)
=

(
2

N

)2

which can only equal 1 since N is odd.
We represented quadratic integers in the form

x+ y · (1 +
√
13)

2

with x and y being integers. First we computed

αh = x+ y · (1 +
√
13)

2

with a simple repeated-squaring algorithm implemented by us for quadratic integers, analogous to
the one for rational integers in [7]. After that we stored

αh + α−h = 2 · x+ y

and used the identity c2 + c−2 = (c+ c−1)2 − 2 for c = αh2i to compute

αh2n−2

+ α−h2n−2

working with rational integers instead of quadratic integers.
Since we only use this test to verify the primality of just a few numbers, extreme efficiency is not

necessary. For example, in the case n = 36 627 and h = 778 965 587 811 our implementation was
able to verify the number’s primality in 7.72784 seconds.

2.2. Probabilistic primality tests

Probabilistic tests, as opposed to deterministic ones, do not always correctly answer whether a given
number is prime or not, but they are often the preferred choice in practice, as they are significantly
faster and there is only a small chance that they are mistaken (around one in a billion).
One of the simplest probabilistic tests is the Fermat test, in which we simply compute an−1

(mod n), for an arbitrary base a relatively prime to n. The result is 1 if n is prime, according
to Fermat’s Little Theorem, and is different from 1 with good chance if n is composite.
The Fermat test can be improved if we consider only odd candidates n > 8 and write them as

n = 1 + q · 2k,

where q is odd. If n is prime, once again applying Fermat’s Little Theorem we get

aq·2
k ≡ 1 (mod n).
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Upon further consideration, we can notice that if n is prime,

x2 ≡ 1 (mod n)

if and only if
x2 − 1 = (x+ 1)(x− 1) ≡ 0 (mod n).

Thus, x ≡ 1 or x ≡ −1, e.g. aq·2k ≡ 1 if and only if aq ≡ 1 or aq·2j ≡ −1 for some 0 ≤ j ≤ k − 1,
which can easily be checked during the computation of aq·2k−1

(mod n). This method is known as
the Miller–Rabin test [3].
We compared the execution times of these algorithms for a = 2, and numbers of the form h ·2m−1,

because only these were considered in our prime hunting project. As expected, there was no noticeable
difference, in fact since h · 2m − 1 = 2 · (h · 2m−1 − 1) + 1 only one extra comparison had to be made
in the Miller–Rabin test.
The Miller–Rabin test can be converted into a deterministic test by testing for several bases, and

applying a bound on the maximum number of bases that give false positives (these bases are known as
liars). One such bound is n/4, which can be obtained by elementary considerations, but this results
in a rather slow algorithm. There is a significantly better bound, but unfortunately it relies on the
Generalised Riemann Hypothesis being true, so the Miller–Rabin test is not used as a deterministic
test.

Theorem 2.3 Let n > 8 be a non-prime power composite number, if the Generalised Riemann
Hypothesis is true, then there exists a base

a < 2(ln(n))2

with which the Miller–Rabin-test discovers that n is composite.

Algorithm 1 The pseudocode of the Miller–Rabin primality test
1: procedure MillerRabin(n) . Miller–Rabin primality test
2: a← 2
3: k ← log2(n− 1)/2
4: j ← k
5: b← aq (mod n)
6: if (((j = k) and (b = 1)) or (b = n− 1)) then
7: return probably prime
8: end if
9: if ((j < k) and (b = 1)) then

10: return composite
11: end if
12: j ← j − 1
13: if (j > 0) then
14: b← b2 (mod n)
15: goto 6
16: end if
17: return composite
18: end procedure
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For the above mentioned prime tests Z. Kiss and D. Papatyi gave their own implementation in our
project. We plan to use these routines in a prime hunting project in the near future, therefore we are
working on further improving the efficiency of these programs. The pseudocode of the Miller–Rabin
test can be seen in Algorithm 1.

3. Prime hunting

Since our prospective purpose is to reach such results as Járai et al. published in [8-21], apart from
primality tests, we also have to implement some efficient sieving programs. In the following part of
this paper the work described in [9] is called Cc22− project.
We focus on the following archivable forms: twin primes, Sophie Germain primes and Cunningham

chains.

Definition 3.1 Let p be a prime. If
• p+ 2 is also a prime then p and p+ 2 are twin primes,
• 2p+ 1 is also a prime then p is a Sophie Germain prime,
• 2p+ 1 and 4p+ 3 are primes then p is a double Sophie Germain or safe prime,
• if we have a sequence of primes

{p, 2p+ d, 4p+ 3d, 8p+ 7d, ..., 2k−1p+ (2k−1 − 1)d},

where k ≥ 2, we speak about a Cunningham chain of length k of the first kind (notation:
Cck1) if d = 1 and a Cunningham chain of length k of the second kind (notation: Cck2)
if d = −1.

Before programming we need to calculate the value of some important hyperparameters. First of
all, we choose a set H =

{
1, 2, . . . , 2R − 1

}
. To find the value of R the Bateman–Horn conjecture [22]

is used. The exact computations of the hyperparameters were published in [23] and [24]. Afterwards
we generate sequences of large numbers by substituting the elements of H into generator polynomials.
These sequences include the prime numbers searched for.

3.1. Generator polynomials

A generator polynomial can be given in the form:

fi(x) = (h0 + c · x) · 2e+i + j, (3)

where j is equal 1 or -1 and i ∈ {0, 1, . . . , l}. The description of the integers e, h0 and c can be seen
later in this subsection. The numbers generated by a generator polynomial are called candidates.
Consider the following deductions: if we set j = 1 then for the polynomials

fi(x) = (h0 + c · x) · 2e+i + 1,

where i = 0, 1, the equation f1 = 2f0 − 1 is valid because

(h0 + c · x) · 2e+1 + 1 = 2 · ((h0 + c · x) · 2e + 1)− 1.

Thus, if for an arbitrary x ∈ H, f0(x) and f1(x) are simultaneously prime then they form a Cc22.
We can observe easily that the polynomials Eq. (3) can generate a Cck2 for an arbitrary k if

i = 0, 1, . . . , k and f0(x), f1(x), . . . , fk(x) are simultaneously primes for some x ∈ H. Furthermore,
we can generate sequences for Cck1 too if we use the value j = −1.
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Algorithm 2 The pseudocode of the sieving method
1: procedure Sieve(R, pS, e, h0, c) . Sieve
2: B[0]← 1, B[1]← 1, . . . , B[|H| − 1]← 1
3: Produce "small primes" PS: primes up to pS with sieve of Eratosthenes
4: p← the smallest prime in PS

5: while p ≤ pS do
6: for i = 1 to k do
7: Let h be the solution of the congruence fi(x) ≡ 0 (mod p)
8: B[h]← 0, B[h+ p]← 0, . . . , B[h+ q · p]← 0, where (h+ q · p) < |H|, q ∈ N
9: end for

10: p← nextprime(p)
11: end while
12: A← {the indexes of elements 1 in B}
13: Do in parallel
14: Compute thread 1
15: Compute thread 2
16:

...
17: Compute thread n
18: EndDo
19: A←

⋂n
j=1Aj

20: return A
21: end procedure

If we hunt for twin primes the appropriate generator polynomials are

fi(x) = (h0 + c · x) · 2e + (−1)i+1,

where i = 0, 1.
Consider now the other hyperparameters. The constant h0 guarantees that the generated numbers

satisfy the Lucasian criteria for the Riesel primality test shown in the previous section. The constant
e is called the exponent and it sets the magnitude of the generated numbers. The constant c is the
product of the first k prime numbers:

c = p1 · p2 · . . . pk,

where k ∈ N+ and pi is the i-th prime. If we correctly set the values of the parameters e, h0 and
c then the numbers generated by polynomials of the form Eq. (3) are sufficiently large, satisfy the
conditions of the Riesel test and do not have prime factors p|c.
If the goal is to generate numbers of the form k · 2n + 1 then h0 = 0 can be chosen. For example,

Farkas et al in Cc22 − project set the parameters in the following way: h0 = 0, c = 30030 and
e = 256000. Thus, the generated numbers had no prime factors less than 17 and had at least 77 069
decimal digits.

3.2. Sieving

The primality tests are highly time-consuming therefore the number of candidates must be re-
duced. In order to explain our method, we introduce some new concepts. Consider the set
PS = {pk+1, pk+2, . . . , pS} which contains all prime numbers between pk+1, the smallest prime which

10
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Algorithm 3 The pseudocode of thread i
1: procedure Thread i(A, pa, pb) . pa, pb are primes and pS < pa < pb < p2S
2: Ai ← A
3: Produce "small primes" PS: primes up to pS with sieve of Eratosthenes
4: while ∃p ∈ PL where p has not yet been used as a sieving prime do
5: while p < pb do
6: Produce the primes from pa to pb → PST with sieve of Eratosthenes
7: p← the smallest element of PST
8: for j = 1 to k do
9: Let h be the solution of the congruence fj(x) ≡ 0 (mod p)

10: Ai ← Ai\{h, h+ 2p, . . . , h+ q · p < |H|}
11: end for
12: p← nextprime(p)
13: end while
14: Update pa and pb
15: end while
16: return Ai

17: end procedure

is larger than the maximal factor of c, and a given prime pS. The elements of PS are called small
sieving primes. We say that a prime p is a large sieving prime if pS < p ≤ p2S holds.
In our project by sieving we mean a method which eliminates the elements from H which generate

numbers having a prime factor up to pM ≈ p2S. The exact description of this method can be found
in subsection 3.3.
We have to point out that the more than 2000 years old method called sieve of Eratosthenes is

still a cutting edge tool for finding all prime numbers up to a given bound even in 2020. Of course,
a time-efficient implementation is necessary. For example, the program run in the Cc22 − project
produced and stored in an array the primes up to pS = 134 217 689 ≈ 227 in less than 5 seconds.

3.3. The details of the sieving method

As a matter of fact the our sieving is a simple variant of the generalized sieve with some linear
polynomials fi(x) where i = 1, 2, . . . , k.
If we set the parameters correctly, then for every p > pk the linear congruence fi(x) ≡ 0 mod p

must have exactly one incongruent solution, which is denoted by h. It is clear that the numbers
h, h+ p, h+ 2p, ... ∈ H generate numbers having a prime factor p. Now we can say that “we sieve H
with p”, i.e. we remove the set {h, h+ p, h+ 2p, ...} from H. Naturally, each sieving prime can sieve
at most k-times. In practice, we defined an array B such that the elements of H are the indexes of
B. Every value in B is initially 1. If we find that any fi(h) has a prime factor in PS for an h < |H|,
we change the values B[h], B[h + p], B[h + 2p], . . . , B[h + qp] to 0, for all h + pq < |H|. The sieve
with small primes can be carried out easily on one fast processor with large operative memory, but
the large prime sieve needs numerous processors and threads. In order to be able to continue the
sieving on lower performance computers, we store the indexes of the 0 elements into an array A. A
is about 30 times smaller than B, so we can take advantage of the cache memory and we can make
the parallelization of the further sieving even with lower-capacity processors.
Now assume that we have a multiprocessor computer or a grid and we can simultaneously use

n threads and let us consider the set of large primes, i. e. PL = {p ∈ P ∧ pS < p < p2S}, where P
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denotes the set of prime numbers. Every thread receives a copy of A, a lower and an upper bound
from the interval (pS, p2S]. Denote by Ai the copy of A received by the ith thread (1 ≤ i ≤ n). Then
every thread performs a sieving process from the given lower bound to the upper bound, producing
an array of primes, a so called prime sieve table. Then the thread sieves its own copy of A with the
primes found in its own prime sieve table. In this stage the effect of sieving on the set A can be
described by the following command:

A := A \ {h, h+ p, h+ 2p, ....h+ qp|q ∈ N, h+ qp ≤ |H|}.

After the ith thread finished sieving with all primes in its prime sieve table, A will be updated
which means that we remove all numbers x from A for which x /∈ Ai. Then if necessary the prime
sieve table will be refilled by large primes and the sieving of the updated Ai may be restarted.
We stop sieving if our program completes the sieving for all primes p ≤ p2S. Finally, the output set

(or vector) A contains numbers which have not prime factors less than p2S. The pseudocode of our
complete sieving method can be seen in Algorithm 2 and Algorithm 3.

4. Conclusions

As the test results our programs show, in the nearly future an effective implementation of the
probability primality tests combined our newly designed “generalized sieve algorithm” would be an
appropriate tool for investigating large “curious prime combinations”.
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