

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

A Problem-based Curriculum for Algorithmic
Programming

NIKHÁZY László

Abstract. Engagement of students plays a crucial part in education, even if they are gifted children. We
know a success story: the extracurricular mathematics camps of Lajos Pósa for talented teenagers in
Hungary. The key to that success is the excellently engineered network of problems that guide students
through discovering the world of higher-level mathematics. It would be a novel approach to teach com-
puter programming and algorithms similarly. In this paper, we attempt to design a network of problems
selected specifically for discovery learning of algorithms and data structures from beginner to advanced
level, targeted for secondary and high school talented students. This could serve as the curriculum for
extra classes or camps conducted with the problem-based teaching method we describe.

Keywords. talent education, competitive programming, discovery learning, algorithms and data struc-
tures.

1. Introduction

There is a unique system for mathematics talent education in Hungary, led by mathematician Lajos
Pósa and his students. The core element of this system is the series of camps in which gifted pupils
can explore mathematics with inquiry-based learning [1]. It is the author’s goal to establish a similar
initiative in the field of computer science. Within computer science, we focus on the core program-
ming skills by teaching algorithmic programming from the beginner to the highest level.

Algorithmic programming involves dealing with well-defined problems to which the solution is an
algorithm that calculates the desired output from the given input, and the program is a way of
expressing this algorithm that allows executing and verifying the solution on a computer. Correct-
ness and effectiveness are both key measures that are evaluated by extensive testing of the pro-
grams. There are a lot of excellent resources available online which promote learning algorithmic
programming on an advanced level, for example Halim’s book [2], and the massive problem base
of past Codeforces contests [3]. However, to use them for our educational goals, we need to or-
ganize these materials and exercises in such a way that enables learning through a series of problem-
solving.

In this discovery learning scenario, we would like to create situations in which students are facing
a problem, and they have already seen the key ideas leading to the desired algorithm while solving
different tasks previously. Therefore, the main challenge of the teacher is designing the curriculum
and arranging the exercises in a proper structure that makes it possible to introduce the right prob-
lem at the right time. In this paper, we present a system of topics and methods, accompanied by
exercises, that could serve as the curriculum for extra classes or camps conducted with the prob-
lem-based teaching method that we already use in individual and small group programming lessons
for high school students.

The structure of this paper is organized as follows. In chapter 1, we briefly introduce the mathe-
matics camps and the didactics of Pósa in the context of discovery learning. In chapter 2, we de-
scribe the goals and challenges of adapting the Pósa-method for computer programming talent
education and elaborate on the design and of the curriculum. In chapter 3, we present the curricu-
lum in detail, list of topics grouped to units and tables with the collection of tasks for each of them.
In chapter 4, we show an example of a topic, dynamic programming followed throughout the entire
curriculum. Chapter 5 contains a short summary of the presented content.

NIKHÁZY László 77

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

1.1. Discovery learning

The term discovery learning refers to pedagogical methods, in which students learn through their
exploration of a certain topic. The goals are usually threefold:

• acquire deep knowledge,

• develop cognitive skills,

• increase engagement.

Deep knowledge in this sense means that the learned information, concepts and methods have
very strong roots in the long-term memory, thus the person has a higher level of understanding of
the subject and can apply this knowledge more successfully in new situations. During the learning
process, students spend most of the time actively working individually or in groups, their
knowledge is constructed by themselves through these activities. This requires immerse brain ca-
pacities used in a variety of forms, through which cognitive skills develop highly. Students’ joy is a
key value in the whole process, to motivate them for further participation and increase their en-
durance.

Discovery learning is strongly related to the constructivist learning theory, which relies on the as-
sumption that people construct their knowledge during mental activities. The learners are consid-
ered organisms that seek meaning, and reflecting on their experience, derive their own set of rules
and mental models of the world. Numerous educators apply discovery learning in modern educa-
tion. Wouter van Joolingen [4] describes it as “a type of learning where learners construct their own knowledge
by experimenting with a domain and inferring rules from the results of these experiments”. He argues that they
will understand the domain at a higher level than when the necessary information is just presented
by a teacher or an expository learning environment. In most cases, discover learning is tied to
problem-solving, Borthick and Jones [5] write that “participants learn to recognize a problem, characterize
what a solution would look like, search for relevant information, develop a solution strategy, and execute the chosen
strategy”.

For us, a type of discovery learning called problem-based learning is particularly interesting, which
is defined by Finkle and Torp [6] as “a curriculum development and instructional system that simultaneously
develops both problem-solving strategies and disciplinary knowledge bases and skills by placing students in the active
role of problem solvers confronted with an ill-structured problem that mirrors real-world problems.” Our approach
is very close to this definition, as we will show it below.

1.2. Mathematics camps in Hungary

Mathematics talent education has a strong tradition in Hungary, and there are numerous mathe-
matics camps. Here we describe the camps organized by The Joy of Thinking foundation [7], es-
tablished by Lajos Pósa. These weekend math camps are characterized by the internationally re-
nowned Pósa-method, which is a form of guided discovery learning. The author, being an ex-
student of Lajos Pósa, has been assisting in these camps for many years, and now teaching two
groups since 2014, so he has a working knowledge of Pósa’s pedagogy.

According to Bibergall [8], guided discovery learning is characterized by convergent thinking. “The
educator devises a series of statements or questions that guide the learner step by step, making a series of discoveries
that leads to a predetermined goal”. In our math camps, the learner is guided through exercises that have
strong interconnection under the surface. Katona and Szűcs [9] describe this as a web of problem
threads.

A Problem-based Curriculum for Algorithmic Programming 78

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

1.3. Problem threads in the Pósa-method

A problem thread consists of tasks that have a connection, which can be of different types. A type
of connection might be that they share the topic, e.g. graph theory. Another type of connection is
when the problems build on top of each other, meaning that the solution of one task needs certain
ideas, methods that are more easily available for students if they solved a previous task. This com-
mon element of thinking, which links tasks in one thread, is called the kernel of the thread by
Katona and Szűcs [9].

For example, the above-mentioned kernel could be induction, which Pósa calls chain-reaction for
young students and starts with a simple logical task of the style “who robbed the bank”, and later
on students will get to proving complex theorems like “every tournament graph has a Hamiltonian
path” using induction. Here we would like to mention that the latter statement is not presented in
such a plain way, but instead, an open question with dragons carrying people between islands, to
make it more fun for kids.

Pósa always emphasizes not to provide a statement to prove, but ask an open question instead, or
even better – which happens in this dragon-world – just present a situation and let the students ask
questions. We aim to introduce kids to research, and particularly in mathematics an interesting
question is very valuable to the scientific community. In this regard, the Pósa-method is also a type
of inquiry-based learning. Students start with divergent thinking when solving a task, the experi-
mentation in the domain of mathematics has a significant role in Pósa’s pedagogy.

1.4. The web of problem threads

During the mathematics sessions of the previously mentioned camps, there are always multiple
problem threads running in parallel, which means that a lot of tasks from different threads are
presented to the students simultaneously. The threads are not isolated, they may have meeting
points, common problems, they may have important links or dependencies between them, forming
a web of problem threads.

The web of problem threads is like a master plan, leading the learner to acquire knowledge and
skills that are our educational goals. So, the main challenge of the teacher is to design the curriculum
to suit the intended development of students, which means identifying the competencies to learn,
organizing them in the right system, and collecting or creating a vast amount of problems and
exercises that will trigger and guide the learning process. In the following, we show a system of
topics and methods accompanied by exercises that serve as a base of our web of problem threads
for algorithmic programming talent education.

2. Discovery learning in algorithmic programming

We need to define our educational goals. As for the mathematics talent education program, Juhász
[10] says “children should be taught how to think, rather than making them learn theorems and formulas by heart
or giving them ready-made methods to solve problems”. Following this principle, our focus is on teaching
algorithmic thinking and problem-solving. Another important objective is to show the joy in think-
ing about interesting problems and creating working programs to solve them. With this, we would
like to open up the world of competitive programming for the children.

The emphasis is not on competition, but these contests are aimed to test the algorithmic thinking
and problem-solving skills of the participants with “nice” tasks. The community of qualified pro-
grammers is preparing the problems of these competitions and they make them so that other peo-
ple would enjoy thinking about them. There is a certain beauty in problems that is hard to describe,

NIKHÁZY László 79

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

and it is much celebrated within the community. This beauty can come from an interesting ques-
tion, an elegant solution, application of a method in an unexpected situation, a nice idea, the con-
nection between different topics, etc. So, the world of competitive programming is partly self-
serving, it provides fun for people doing it, very much like how Lajos Pósa describes the world of
mathematics [11].

Computer programming is a bit different from mathematics. There are a lot of standard algorithms
and data structures that are almost ready-made methods that you need to customize, combine, and
apply in numerous different scenarios. We try to teach them through a series of problems, having
the students discover them mostly on their own, if possible. However, we put more emphasis on
the applications of these methods in different problems. Therefore, we consider our approach a
problem-based pedagogy. The problems have similar dependencies and connections between each
other as the ones in Pósa’s mathematics camps. We create problem threads for the algorithms and
data structures we teach and try to connect them, thus forming our web of problems. Fortunately,
the tasks at programming contests usually have some funny stories to cover the underlying prob-
lem, so at first sight it is not obvious to which thread they belong.

2.1. The objectives of our curriculum, related work

Designing the curriculum starts with identifying the topics and methods we want to teach. Pro-
gramming competitions reflect quite well what the community of computer scientists consider im-
portant knowledge and skills in the field of algorithmic programming. We selected the elements of
this curriculum by looking at materials of competitions and those, up-to-date literature helping to
prepare for contests.

Our most important source is the Syllabus for the International Olympiad in Informatics (IOI)
[12], it provides an excellent summary of expected knowledge. Competitive Programming 3 by
Halim et al. [2] contains most of the topics occurring at ACM International Collegiate Program-
ming Contest for university students. We examined the contents of Laaksonen’s Competitive Pro-
grammer's Handbook as well [13]. There are some excellent on-line resources and tutorials collect-
ing the important algorithms and data structures, for example the CP-Algorithms website [14]
Geeks for Geeks [15] and various blogposts on Codeforces [16-17]. Using these sources, and our
experience in the history of high school competitions, we compiled the contents of our curriculum,
which are the most relevant knowledge for high school students in our opinion.

There are numerous similar articles, especially about the topic of how to prepare students for com-
petitions. Király [18] describes a whole roadmap of teaching programming from the very beginning
to the preparations for the IOI, together with proper pedagogical guidelines and useful advice. In
her doctoral dissertation, Erdősné [19] provides a detailed insight into Hungarian and international
talent education in informatics, also outlining a plan of teaching advanced level programming
throughout secondary school. At the concrete topics where they include tasks, both papers present
very similar exercises to our chosen ones. In comparison to their work and the above-mentioned
literature, the novelty of this curriculum lies in tailoring the system of problems to the discovery
learning method of Pósa. Since the selection of tasks and the interconnections play a crucial part
in our didactics, we provide a more detailed and more complete list of exercises, organized in the
structure described below.

2.2 Design and overview of the curriculum

Most of the books, online courses and tutorials about programming focus on the elements of the
language. We have different goals, so these are out of scope for us, but we would like to build on
the basics. Teaching algorithms, we assume knowledge of language elements, like variables, types,
operators, conditional statements, loops, etc. We start at the very basic algorithmic structures and

A Problem-based Curriculum for Algorithmic Programming 80

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

finish with some of the most complex methods required for the IOI. The primary use of this
curriculum will be a talent education program with groups of gifted children beginning around age
12 and lasting until age 17. The examples of Pósa’s mathematics camps showed us that it is possible
the keep such groups together for years, develop their knowledge systematically, and teach topics
building upon each other.

For our problem-based method, the curriculum would be a huge network of tasks, through which
students discover, practice and expand their knowledge. To design it, first, we look at the bigger
picture, organize the theoretical backgrounds of the tasks, and identifying interconnections be-
tween them. The resources we used, which are mentioned above in section 2.1, present the mate-
rials categorized and ordered by topics, which is great if we search for something we already know,
but not the ideal order for learning. We not only talk about their order of difficulty, but our goal is
also to find the ideal plan, where we minimize the number of great ideas needed to work out the
desired algorithms.

Figure 1 shows a graph of curriculum modules, each abbreviated by a short code for readability.
Full names and descriptions of these can be found in the tables of section 3. We categorized these
modules into four types that have different colors on the graph:

• problem-solving techniques (red),

• algorithms or algorithm templates (blue),

• data structures (green),

• theoretical backgrounds or subjects (yellow).

Interconnections between these elements are visualized by arrows, the thicker the arrow is, the
stronger we find the dependency between them. We also use light grey arrows, which don’t mean
dependency, rather similarities, when knowing a method is helpful for the other one.

Later, in section 3 we divide the modules to units in order to have reviewable segments. We provide
a collection of problems for each unit, dedicated to modules, with certain objectives. This collection
is not complete, and never meant to be, extending and changing it constantly is part of our philos-
ophy. These problems serve as a good skeleton for starting a talent education program with dis-
covery learning. For our pedagogy, we define the following three important types of tasks.

• Introduction problems are the very first problems of a topic that can induce discovery.

• Reinforcement problems involve the application of a previously discovered method in new
situations, or they can be practice problems as well, their goal is to strengthen students’
knowledge.

• Synthesis problems in our terminology mean tasks that bring together multiple learned meth-
ods or require a high level of understanding of the concepts involved.

Problems are, of course, very often linked to topics and problems in different units, which cannot
be shown in the format of this document.

NIKHÁZY László 81

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

Figure 1: The graph of the curriculum

A Problem-based Curriculum for Algorithmic Programming 82

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

3. Details of the curriculum

Below we present the parts of the curriculum with more detailed descriptions. Grouping them into
units serves as an aid for presenting, there are no hard boundaries between them, and there are
very important interconnections in-between units. We estimate the length of the units to take up
2-3 weekend camps, which can be scheduled in one year or even in one semester.

Within units, we propose problems for teaching the algorithms and data structures, where applica-
ble. They are collected from various online problem sets that are publicly available and have a
judgement system to verify solutions. This is important for us, we would like to show the students
that not only the theory but the implementation is an essential part of computer science. We use
identifiers for the problems, that consist of an abbreviation of the problem source listed below,
and a handle of the problem, which can be used to find it (by web search or on the site itself).

• CF: Codeforces, CFG: Codeforces Gym [3].

• HR: HackerRank [24].

• CC: CodeChef [25].

• CSA: CS Academy [26].

• SPOJ: Sphere Online Judge [27].

• UVa: UVa Online Judge [28].

• IOI: Tasks of the International Olympiad in Informatics. Grader for most of them can be
found at PEG Online Judge [29].

• M: Mester [30]. A Hungarian problem collection. Unfortunately, translations for these prob-
lems are not available yet, we plan to write them for the ones that we use, in a new system
that is under development at Eötvös Loránd University. (We give the English translation of
task names in parentheses.)

• ICPC: ICPC Live Archive [31].

• TIMUS: Timus Online Judge [32].

Erdősné [20] gives an excellent overview of online judges and their features that includes all the
above-listed websites. As the reader can see in the following chapters, in our problem collection
we favor Codeforces, HackerRank, and Mester, because using practice mode in these the student
(or the teacher) has access to the small test cases and their expected answers, which is very helpful
for debugging.

3.1. Unit 1: Introduction

In this unit, we introduce some basic algorithmic patterns that are necessary as building blocks of
further, more complex algorithms. Most of them operate on a sequence of numbers, so we heavily
use the one-dimensional array data structure. Zsakó and Szlávi refer to them as programming the-
orems [27]. Students need to acquire firm knowledge of these basics so that later they can easily
apply them as part of a compound solution. Knowing the required language elements, talented
students can invent algorithms to solve these tasks. While there is no inevitable dependency be-
tween them, we recommend introducing them in the order below. As the first combination of
loops and conditional statements (for and if), counting elements with a certain property (e.g. even
numbers) is a straightforward problem.

For introducing the algorithms listed below, we generally use the tasks available in Mester [30], the
Hungarian problem set, categorized accordingly, so we don’t list them here. It is also not difficult
to invent our own tasks for these basics. Number theory is a great topic for applying and combining
what we learned in this unit. For example, deciding whether a number is a prime comes down to
searching for a divisor of it. With summing the divisors, one can search for amicable numbers. It

NIKHÁZY László 83

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

is also a great opportunity to introduce functions as a language element. Discovering the Euclidean
algorithm, students can see something advanced and very elegant. There is a great task guiding to
the Euclidean algorithm (CF - 527A. Playing with Paper), in which you start with a rectangular paper,
and always cut off square-shaped parts of it.

Code Name Description

SUM Sum Calculate the sum of a series of numbers.

COUNT Count Count the elements of a series with a certain property.

SEARCH Search
Search for the element(s) with a given property in a se-
quence.

MIN SEL Minimum Selection Select the minimum/maximum in a sequence.

SORT Sort
Sort a sequence with simple algorithms, like bubble
sort, min. selection sort, counting sort, etc.

MERGE Merge
Compute the intersection/union of two sets (ordered
list of data), using the linear merge algorithm.

NUM THEORY Basic Number Theory
Calculate the number of divisors and sum of divisors of
an integer, search for primes, prime factorization, Eu-
clidean algorithm for GCD.

Table 1: Modules of the first unit

3.2. Unit 2: Some basic problem-solving techniques

In this unit, we dive into the world of programming contest problems. Computing solutions quickly
becomes a key factor, we introduce the notion of computational complexity and analyze every
solution from this aspect. Greedy algorithms with obvious greedy decisions are a great start to
provide easy success to everyone, and not much later problems for dynamic programming will
show that greedy doesn’t always work. The technique of recursion is essential to introduce early
since it is used in multiple other methods of this unit. Building on the concept of recursion, and
knowledge from unit 1, we can guide the learners to efficient sorting algorithms, like merge sort
and quicksort.

Code Name Description

GREEDY Greedy Algorithms
Solve problems using greedy decisions, recognize
whether it leads to the optimum.

REC Recursion
Get familiar with the power of recursion in typical sce-
narios.

MERGE SORT Merge Sort Recursive sort algorithms: merge sort and quicksort.

2 POINT Two Pointers
The two pointers principle for speeding up some opti-
mization tasks.

PREFIX SUM Prefix Sum
The prefix sum / cumulative sum of a sequence, as a
data structure.

PATH DP DP for Finding Best Path
Introduction to dynamic programming: optimize a
route on a grid.

GAME DP DP for Simple Games
Find the winning strategy in simple two-player games
with dynamic programming.

COMB Combinatorics
Basic tasks involving combinatorics, like permutations,
combinations, Fibonacci-type sequences, etc.

BIN SEARCH Binary search
Bisect to find a value in a sorted range, and to find ex-
tremum using a predicate.

BACKTRACK Backtrack
Speed up brute-force algorithms by backtracking, 8
queens’ problem and similar.

KNAP DP DP in Knapsack problem
Some typical DP problems: Coin Change, Knapsack
and alike.

Table 2: Modules of the second unit

A Problem-based Curriculum for Algorithmic Programming 84

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

With the prefix sum data structure, students can construct their first powerful data structure to
answer queries. Binary search appears in the form of looking for a value in a sorted range, and then
comes the great idea to use it when maximizing or minimizing some target with some constraints
(e.g. in task CF - 760B. Frodo and Pillows). We also show problems where only exponential solutions
are known, but we can speed them up using backtracking. A nice introduction task could be to
generate all balanced parentheses sequences of a certain length.

Dynamic programming could be built up in different ways, we propose starting it with problems
in which we examine paths on a grid with only right and downwards steps. In this case, calculating
partial results with a bottom-up strategy comes as a natural idea, much easier conceptually than
transforming recursive formulas in problems like the Coin Change or the Knapsack problem. We
eventually get there as well, but in the meantime, we also take a step applying dynamic programming
for computing winning strategies in simple two-player games. It is used also in combinatorial prob-
lems, which are at this level mostly related to the Pascal triangle, Fibonacci-type sequences, permu-
tations and variations. Below we include a table showing example tasks that we propose for the
modules in this unit, according to the principles described in section 2.

Code Introduction Reinforcement Synthesis

GREEDY
M - Wifi,

HR - Priyanka and Toys

M - Mekk Elek (Mekk Elek
the Handyman)

M - Fénykép (Photo)

CF - 349B. Color the Fence

M - Termek (Rooms)

CF - 1077E. Thematic Con-
tests

REC Towers of Hanoi
M - Felbontás (Decomposi-
tion)

HR - The power sum

2 POINT

CF - 660C. Hard problem,

M - Autószállítás (Car Ship-
ping),

CF - 1133C. Balanced Team

CF - 616D. Longest k-good
Segment,

CF - 1006C. Three Parts of
the Array

M - Nyaralások (Trips),

IOI11 - Rice Hub

PREFIX SUM
SPOJ - CSUMQ,

CF - 313B. Ilya and Queries,

M - Távoli bolygó (Distant
Planet),

CF - 816B. Karen and Cof-
fee

M - Képátló (Image
Diagonal),

IOI11 - Rice Hub

PATH DP

M - Kincsek a hegyoldalon
(Treasures on the hillside),

M - Pontgyűjtő verseny
(Point collecting contest)

M - Benzin (Gasoline),

CF - 429B. Working out

M - Lépcsők (Stairs),
M - Képátló (Image
diagonal),

CF - 407B. Long Path

GAME DP HR - Game of Stones

HR - A Chessboard Game,

M - Számok elvétele (Re-
moving Numbers)

M - Fehér és Fekete
korongok (White and Black
Tokens),

CF - 731E. Funny Game

COMB
HR - Picking Cards,

CF - 617B. Chocolate

HR - Sherlock and Pairs,
CF - 894A. QAQ

M - Lépcsők (Stairs),

HR - Merge List

BIN SEARCH

CF - 706B. Interesting
Drink,

CF - 600B. Queries About
Less or Equal Elements

CF - 760B. Frodo and Pil-
lows,

CF - 670D2. Magic Powder

IOI11 - Rice Hub,

UVa - 1079. A Careful Ap-
proach

BACKTRACK
Balanced Parentheses,

8 Queens problem
M - Ültetés (Seating) CC - KOL1510

KNAP DP

M - Nem kifizethető címlet
(Unpayable Amount),
M - Bélyeg (Stamps),
SPOJ - KNAPSACK

CF - 19B. Checkout Assis-
tant,

M - Munkagépek (Machines),
M - Vásár (Sale)

CFG - 102534B. Need
More T-shirts,

CF - 1132E. Knapsack

Table 3: Problems for the second unit

NIKHÁZY László 85

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

3.3. Unit 3: Graph theory-driven problems and algorithms

A lot of real-life problems can be formulated with graphs, and so they appear frequently in pro-
gramming competitions above a certain level. In this unit, we teach the most commonly used, but
still not too complex algorithms. Some theory is involved, students need to learn the notion of
trees and graphs. We recommend problems on rooted trees first which have recursive solutions,
because they are quite elegant and serve as a base for depth-first search. Three basic, linear data
structures can be learned concurrently, stack, queue and double-ended queue, we apply them in
graph traversals, and at this point some beautiful and hard problems can show their advantages
(HR - Largest Rectangle, HR - Deque-STL).

The two types of graph traversal (breadth-first and depth-first) are introduced on simple, undi-
rected graphs. At this level, breadth-first search has more applications, while we build on depth-
first search a lot in the next unit. The graph traversals work the same way in directed graphs, and
particularly acyclic graphs of this type are interesting for us, they model practical problems like
scheduling a project, university studies or this curriculum itself. There is a nice combinatorics task,
where the question is how many different paths are between two vertices (HR - Kingdom Connectivity).

Code Name Description

TREES Trees, Binary Trees
Tree structure appearing in different situations, e.g.
family tree, company structure.

TREE REC Recursion on trees
Compute values for trees using recursion, problems in-
volving a hierarchical structure.

LIST Linked lists
Know the basics of linked data structures, and when to
use them considering their advantages and disad-
vantages.

STACK Stack Understand and use the stack (LIFO) data structure.

QUEUE Queue, Deque
Understand and use the queue (FIFO) and double-
ended queue data structures.

GRAPHS Graphs
Conceptual introduction of graphs as a background of
different problems.

BFS Breadth-First Search
Solving problems using graph traversal in increasing or-
der of distance from a vertex.

DFS Depth First Search
The recursive depth-first search algorithm and basic ap-
plications.

DAG Directed Acyclic Graphs
Problems involving a DAG, like critical path method,
topological ordering.

SP ALGOS Shortest Path Algorithms
Find shortest paths in a graph. Bellman-Ford, Floyd-
Warshall, Dijkstra algorithms.

HEAP Heap, Priority Queue
Understand the heap data structure, and use priority
queue when needed, e.g. in Dijkstra and Prim algo-
rithms

MST Minimum Spanning Tree
Find the minimum spanning tree in graphs. Kruskal
and Prim algorithms.

DSU Disjoint Set Union
The DSU (or Union-find) data structure applied in vari-
ous problems, e.g. Kruskal algorithm.

Table 4: Modules of the third unit

Two data structures, DSU and heap are included here for two reasons: they are necessary for effi-
cient implementations of Kruskal, Dijkstra and Prim algorithms, and both are viewed as rooted
trees, so they perfectly fit in here. In programming competitions, heap is generally applied by using
the priority queue included in standard libraries, while DSU needs to be implemented.

We conclude the unit with two more advanced problems on weighted graphs: shortest paths and
minimum spanning trees. Well-known algorithms listed below can be discovered by students with
some hints. Since weighted graphs can model various real-world problems, there are a huge amount
of competition tasks where these algorithms are necessary with some modifications.

A Problem-based Curriculum for Algorithmic Programming 86

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

Code Introduction Reinforcement Synthesis

TREE REC
M - Titkos társaság (Secret
association)

CF - 115A. Party,

CF - 580C. Kefa and Park
HR - Even Tree

STACK
HR - Equal Stacks,

UVa - 514. Rails
HR - Balanced Brackets

HR - Largest Rectangle

CF - 547B. Mike and Feet

QUEUE
UVa - 10935. Throwing
cards away

HR - Deque-STL IOI06 - Pyramid

BFS
List vertices in order of dis-
tance from one vertex

M - Randi (Date),

M - Csapat (Team),

CF - 796D. Police Stations

M - Mérőkannák (Measuring
cups),

CSA - BFS-DFS

DFS SPOJ - ABCPATH

CF - 445B DZY Loves
Chemistry,

M - Utcaseprő (Street
sweeper)

CF - 1316D. Nash Matrix
CSA - BFS-DFS

DAG

M - Építkezés (Contruction),

M - Utak száma (Number of
routes)

CF- 915D. Almost Acyclic

Graph

CF - 512A. Fox and Names

HR - Kingdom Connectivity

SP ALGOS
CF - 20C. Dijkstra,

CF - 295B. Greg and Graph

M - Autóbusz járatok (Bus
lines),

HR - Jack goes to Rapture

M - Telephelyek (Sites),

IOI11 - Crocodile

MST SPOJ - MST M - Malom (Mill)
HR - Roads in Hackerland

CF - 160D. Edges in MST

DSU
CF - 1095F. Make It Con-
nected

M - Hálózat tesztelés

SPOJ - CONSEC

CC - ABROADS

CF - 875F. Royal Questions

Table 5: Problems for the third unit

3.4. Unit 4: Various advanced algorithms, geometry, combinatorics

Our fourth unit contains some theoretically complicated algorithms. Speaking of Hungarian na-
tional contests, these are only required for the highest age group (11-12th grade). One can argue
that discovery learning is not possible in some of these topics. We still aim for introducing them
through exercises in which we provide hints to the students. Furthermore, deep understanding can
be also achieved when the students implement solutions based on these complex algorithms.

Code Name Description

LCS DP
Longest Common Subse-
quence

Dynamic programming using non-trivial two-dimen-
sional arrays.

LIS DP
Longest Increasing Subse-
quence

Dynamic programming sped up with binary search or
other methods.

BIT DP Bitmask DP
Dynamic programming on subsets, using the bit vector
representation of sets.

ART POINT
Articulation Points,
Bridges

Biconnected graphs, Tarjan’s algorithm and the L-value
for finding cut vertices and edges.

SCC
ALGOS

Strongly Connected Com-
ponents

Kosaraju’s and Tarjan’s algorithm and applications.

EULER PATH Eulerian Path
Condition of Eulerian path or circuit and finding it in
directed and undirected graphs.

MAX MATCH Maximal Matching
Hungarian algorithm for the maximal matching in a bi-
partite graph.

MOD ARITH Modular Arithmetics
Calculate powers and inverses efficiently modulo a
given number.

ADV COMB Advanced Combinatorics Various difficult combinatorics problems.

INC-EXC
Inclusion-Exclusion Prin-
ciple

Apply the inclusion-exclusion principle to answer some
questions in combinatorics.

GEOM Geometry Geometric problems on the Cartesian plane.

Table 6: Modules of the fourth unit

NIKHÁZY László 87

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

There are graph theory topics (Articulation Points and Bridges, Strongly Connected Components,
Eulerian Path, Maximal Matching) which mostly rely on depth-first search and its extensions. We
would like to mention two beautiful tasks, CF - 508D. Tanya and Password, which is a surprising
application of Eulerian paths, and UVa - 12668. Attacking Rooks, where the idea is to introduce a
bipartite graph where the edges are fields on the chess table.

Dynamic programming is present throughout the curriculum in many other algorithms, but here
we revisit it with more advanced applications. Below, we named two characteristic tasks (Longest
Common Subsequence and Longest Increasing Subsequence), but there are much more included,
in the first topic could be any other task that requires a non-trivial two-dimensional array formula-
tion, and the second is related to tasks where we combine dynamic programming with other tech-
niques, like binary search in the example problem.

Advanced Combinatorics includes not only questions about how many ways we can construct
something, there is often an ordering (e.g. lexicographical) defined between these and telling the
element at a given position requires a profound understanding of recursive patterns. The number
of solutions is often very large, and then the answer is expected modulo some big prime, so the
apparatus of modular arithmetic is used here. That is also very interesting itself, cryptographic ap-
plications can be visited.

Code Introduction Reinforcement Synthesis

LCS DP HR - The LCS
M - Jelek (Signs),
M - Rúd felvágás (Stick cut-
ting)

CF - 607B. Zuma,
HR - LCS Returns
IOI09 - Raisins

LIS DP
M - Konténeroszlopok
(Container Columns)

M - Kockákból legmagasabb
torony (Highest Tower of
Cubes)

CF - 650D. Zip-line

BIT DP M - Vásárlások (Purchases)
CF - 580D. Kefa and
Dishes

CFG - 102128B. Cake
Tasting

ART POINT SPOJ - SUBMERGE
M - Duplán elérhető pontok
(Double reachable points)

CF - 700C. Break Up

CF - 732F. Tourist Reform

SCC ALGOS

SPOJ - CAPCITY

UVa 13057 - Prove Them
All

CF - 427C. Checkposts

CF- 949 C. Data Center
Maintenance

M - Hercegek házassága
(Wedding of Princes)

SPOJ - ADAPANEL

EULER
PATH

M - Zárkód (Lock code)

CF - 1334D. Minimum
Euler Cycle

CF - 508D. Tanya and Pass-
word

M - Dominó

MAX MATCH HR - Real Estate Broker

UVa - 12668. Attacking
Rooks

CF - 498C. Array and Oper-
ations

M - Hercegek házassága
(Wedding of Princes)

SPOJ - QUEST4

MOD ARITH
UVa - 10104. Euclid Prob-
lem

CF - 300C. Beautiful Num-
bers,

CF - 717A. Festival Organi-
zation

M - Szigetek (Islands),

HR - Game of Thrones II

ADV COMB

HR - Lexicographic steps,
CF - 9D. How many Trees?

CC - NWAYS

CF - 612E. Square Root of
Permutation,
M - Birtokfelosztás (Divid-
ing land)

M - Szigetek (Islands),

HR - Game of Thrones II

INC-EXC SPOJ - NGM2 UVa - 11806. Cheerleaders CF - 102128B. Cake Tasting

GEOM

M - Házak (Houses)

M - Zárt poligon készítése
(Creating a closed polygon)

M - Autópálya (Highway)

M - Háromszög (Triangle)

M - Hegy (Mountain)
CF - 552D. Vanya and Tri-
angles.

UVa - 12278. 3-sided dice

Table 7: Problems for the fourth unit

A Problem-based Curriculum for Algorithmic Programming 88

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

Geometry is a huge category, it starts with basic operations, like computing orientations, deciding
if segments intersect, etc. and leads to sophisticated methods like sweep-line principle and convex
hull algorithm. It is a very good example of how we can build up a topic step-by-step. We need to
rely on various knowledge from mathematics at school, most importantly the Cartesian coordinate
system.

3.5. Unit 5: Complex data structures, string algorithms

The final unit is dominated by data structures and contains some topics which are not required
even for the IOI. Teaching data structures like Segment Tree, Fenwick Tree, Trie or Sparse Table
with discovery learning is quite difficult, we have not researched this area extensively yet. Currently
our pedagogy goes with describing and visualizing them on examples, and having the students work
out the implementation for deeper understanding. The emphasis is on customizing them and using
them in various new scenarios. A great example is using the Trie for binary numbers, e.g. finding
the pair of numbers with maximal XOR value in a given set.

We also aim to capacitate the students to describe the data structures that they need to solve a
certain problem, in terms of its operations and their maximum complexity. The next step is design-
ing such a data structure, which is usually adapting a known data structure appropriately.

Code Name Description

SEG TREE Segment Tree
The Segment Tree data structure for updating and que-
rying certain computed values in a range.

BI TREE
Binary Indexed / Fenwick
Tree

The Fenwick Tree data structure as an alternative to
segment trees.

TRIE
Trie, Suffix Tree, Suffix
Array

Data structures for storing and searching text corpora:
Trie, Suffix Tree, Suffix Array.

Z, KMP
Z-algorithm, Knuth-Mor-
ris-Pratt

Advanced string pattern matching algorithms: Z, KMP
algorithm.

FLOW Network Flows
Modell problems as network flows, minimum cut maxi-
mum flow algorithm.

GAUSS Gaussian Elimination Solve a system of linear equations.

LCA
Lowest Common Ances-
tor

Finding the lowest common ancestor of tree vertices,
and its applications.

SQRT SQRT Decomposition
The Square Root Decomposition problem-solving
technique. Mo’s algorithm.

ST, RMQ
Sparse Table, Range Mini-
mum Query

Sparse Table for solving the Range Minimum Query
problem, plus further applications.

Table 8: Modules of the fifth unit

The unit also contains the topic of Network Flows, solving a system of linear equations by Gaussian
elimination, and Square Root Decomposition as a problem-solving principle. All of them appear
in some very hard tasks, with tricky applications. Computing the Lowest Common Ancestor and
Range Minimum Query are connected topics, furthermore, they can be related to data structures
in this unit.

Finally, we included some advanced string processing algorithms in this unit, which are mostly
about efficiently searching a pattern in a text. However, they can be used for many different prob-
lems, like counting the distinct substrings of a string. Together with the Trie, Suffix Tree and Suffix
Array data structures, they form a whole toolset to tackle tasks with strings.

NIKHÁZY László 89

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

Code Introduction Reinforcement Synthesis

SEG TREE
UVa - 12532. Interval Prod-
uct

CF - 380C. Sereja and
Brackets,

CF - 474F. Ant Colony

CF - 524E. Rooks and Rectangles

CF - 242E. XOR on Segment

BI TREE SPOJ - INVCNT CF - 61E. Enemy is Weak SPOJ - DCEPC206

TRIE SPOJ - PHONELST CF - 455B. A Lot of Games ICPC - 4682. XOR Sum

Z, KMP CC - KAN13C
CC - TASHIFT,
CF - 126B. Password

SPOJ - DISUBSTR

FLOW SPOJ - POTHOLE
UVa - 820. Internet Band-
width

CF - 546E. Soldier and Traveling

GAUSS SPOJ - XMAX
TIMUS - 1042. Central
Heating

LCA HR - Kth Ancestor
TIMUS - 1471. Distance in
the Tree

CF - 342E. Xenia and Tree

SQRT SPOJ - GIVEAWAY
CF - 13E. Holes,

CF - 86D. Powerful Array
CF - 342E. Xenia and Tree

Table 9: Problems for the fifth unit

4. Following a topic throughout the curriculum: Dynamic Programming

4.1. Our approach to DP

Many educational materials introduce Dynamic Programming (DP) using recursion, as a way of
overcoming the time complexity caused by the curse of recursion. We would like to show an alter-
native way here, without claiming any of them better. Erdősné [21] and Forišek [22] give an excel-
lent overview of the place of DP in popular algorithm textbooks, and rightfully argue that those
books do not provide a good approach to present the DP paradigm to secondary school students.
Both papers suggest teaching DP after recursion, Forišek [22] even gives a strategy to transform a
top-down recursive solution to a bottom-up DP solution. Király [18] suggests that DP should be
taught only after recursion and backtracking and greedy algorithms at an advanced stage of pro-
gramming knowledge. Independently from the three mentioned authors, we selected very similar
problems and almost the same order of them. There is one crucial difference: our approach starts
with the bottom-up strategy. We agree with Erdősné [21] that the LOGO language can provide
very solid grounds for recursion at a young age, but unfortunately in recent years we see a lot of
children who start learning algorithmic programming without doing any LOGO before. This is
one reason why we do not wish to rely on recursion.

In our scenario, there are young kids, for whom arrays are generally easy to understand, while
functions are harder, recursive functions even more. Since we teach programming and algorithms
together, and we consider the features of the programming language as tools for our algorithms,
we can bring up the concept of DP with very simple problems, even before teaching functions.
Regarding the approach of Forišek [22], another aspect of our method is that we do not start with
presenting a method of problem-solving, but give a problem to the children, in which the single
way of succeeding is the solution that we intend to teach. For this, we need problems where they
don’t have another choice, but to follow the way the teacher wants to follow. If we started with
Fibonacci numbers, expecting children to first come up with the recursive solution and then figure
out the steps to convert it to a bottom-up DP, our educational goals might be “screwed” by smart
kids, who immediately solve it with an array - which is quite a natural solution.

We aim to introduce DP as a way of solving a task by “filling a table”. It sounds much more
innocent than “decomposing to subproblems”, even though that is happening under the surface.
We will include some formulas to show how the DP tasks get more and more complex as we
advance in the curriculum.

A Problem-based Curriculum for Algorithmic Programming 90

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

4.2. First steps

A simple introductory task is listed above as M - Kincsek a hegyoldalon (Treasures on the hillside), in
which there are treasures on a grid, and we need to collect as many as we can, only moving to the
right and down, starting from the upper left corner. The idea of calculating the maximum amount
of treasures we can take to each cell comes naturally. If not, our pedagogy involves being ready to
give good hints. In this case, we usually present a complicated example on paper and ask the stu-
dents to solve it by hand, during which they most likely come up with the desired method.

 0
❖ 1 1 1 1 1

 0 1
❖ 2 2 2 ❖ 3

❖ 1 1 2 ❖ 3 ❖ 4 4

 1 1 ❖ 3 ❖ 4 4 ❖ 5

❖ 2 2 3
❖ 5 5 5

❖ 3 ❖ 4 ❖ 5 5
❖ 6 6

Figure 2: A concrete example of calculating the most collectable treasures for each cell

The formula which lies beneath this problem goes as follows:

DP[i,j] = max(DP[i-1,j], DP[i,j-1]) + T[i,j]

DP[i,0] = 0, DP[0,j] = 0

(1)

For practice, we use another “collect points on a grid” type exercise, M - Pontgyűjtő verseny (Point
collecting contest), where the possible movements are different. As a reinforcement, we propose a
similar, but a bit more difficult task, M - Benzin (Gasoline), which also includes constructing the
optimal path. A quite hard task belonging to this group is CF - 429B. Working out, it can be used
later to refresh the knowledge. We called this category PATH DP, expressing that we are usually
searching for an optimal path to the destination.

Starting a bit later, but parallel with this thread, we analyze simple two-player combinatorial games
and construct optimal strategies by determining the winning and losing positions. This is also a
great opportunity to start the exploration of this world offline, with actually playing some simple
games and finding their winning strategy without a computer.

A very basic problem is HR - Game of Stones, where two players take away 2, 3 or 5 stones from a
pile in alternating turns, and the one unable to take, loses. The task is to tell who will win starting
from various number of stones if both players play optimally. The problem could be generalized
with different allowed moves. The solution programmatically comes down to deciding for every i

number of stones increasingly, whether it is “good” to leave i stones, based upon that we know

the previous answers. The notion of winning and losing states and their properties can be formu-
lated at this point. The formula here would look like this:

DP[i] = not(DP[i-2] or DP[i-3] or DP[i-5])

DP at negative values treated as false

(2)

Our reinforcement task in this topic is a conceptually simple, but programmatically complex, two-
dimensional game played on the chessboard, HR - A Chessboard Game. In this game both players
move one token taking turns, they can make the knight moves that decrease the sum of coordinates.
With this, the dynamic programming nature of game analysis becomes clear, and students also face
a problem, where the order of computing the DP table elements is not straightforward. If they
have a firm understanding of recursion, we can show them the power of recursion with memori-
zation (called memoization). The below expression describes the computation in this task:

NIKHÁZY László 91

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

DP[i,j] = not(DP[i-2,j+1] or DP[i-2,j-1] or

DP[i-1,j-2] or DP[i+1,j-2])

DP outside the table treated as false

(3)

Figure 3: The moves and winning fields of the chessboard game

The synthesis problems for this module should occur much later, but we want to mention here
that the task M - Fehér és Fekete korongok (White and Black Tokens). There is a row of white and black
tokens in this game, a player in one move can take a token from either the beginning, or the end
of the row, and both players have to maximize their white tokens. This task is a great opportunity
to first come up with a solution that constructs a 2D array, where the problem itself involves only
a sequence. Here the states of the game guide us to the 2D data structure, and this motif is very
important in the more advanced tasks of the LCS DP module.

There is an important connection with the Combinatorics module of this unit, namely that DP is
often the method to solve a combinatorics problem. Calculating elements of the Pascal-triangle
can be viewed as a DP task as well. An excellent problem involving a 1D array filling is M - Lépcsők
(Stairs). The question is how many ways you can go up N stairs if you can take steps of at most K
stairs. We suggest scheduling this task soon after the first DP problems, in parallel with other
PATH DP tasks. The bottom-up nature of DP is very clearly visible, as we count the ways of
reaching each stair in order.

 34 7

 24 6

 13 5

 7 4

 4 3

 2 2

 1 1

(1) 0

Figure 4: The number of ways to reach each stair, with maximal step size K=3

The formula of the solution is the first of this kind that doesn’t have a closed form:

DP[i] = DP[i-1] + DP[i-2] + … + DP[i-K]

DP[0] = 1, DP at negative values treated as 0

(4)

Besides DP, we plan to introduce recursion approximately at the same time, or just a little bit
shifted. The close relation between these strategies should be enlightened and demonstrated thor-
oughly. The two topics running in parallel helps to strengthen their grounds. Furthermore, DP in

A Problem-based Curriculum for Algorithmic Programming 92

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

some cases can be more elegantly performed using recursion with memoization, particularly when
the computing order is not trivial.

4.3. Exploring the power of DP

After feeling the taste of DP with problems where transitions are steps in a game-like scenario, the
students will meet less obvious DP problems in different wrapping. We named this module Knap-
sack DP after the very representative Knapsack problem.

We start with a similar, but much easier task, the Coin Change problem, where the question is what
amounts of money can be paid using some set of banknotes (not asking for the minimum number
of notes yet). It can be modeled with a single 1D boolean array, and deciding payability for each
integer amount increasingly is an intuitive idea (programmatically very similar to HR - Game of
Stones). With B[1..N] denoting the values of coins, we can formulate the solution as follows:

DP[i] = DP[i-B[1]] or DP[i-B[2]] or … or

DP[i-B[N]]

DP[0] = true

DP at negative values treated as false

(5)

Minimizing the number of notes is the next step and it is a representative example of greedy not
working. The M - Bélyeg (Stamps) task is essentially this problem.

The Knapsack problem, SPOJ - KNAPSACK has a special role in our DP curriculum, this is the
first time when we use a non-trivial task decomposition with two variables. There are N items with

different sizes and values, and we have to fit as much as we can into a backpack with size K. We

calculate the maximum value for each backpack size when considering the inclusion of the items
one by one. Here we present the underlying formula, where V[1..N] are the values, and

S[1..N] are the sizes of the items:

DP[i,j]= max(DP[i-1,j], DP[i-1,j-S[i]] + V[i])

DP[i,0] = 0, DP[0,j] = 0

DP at negative values treated as -∞

(6)

Many other real-life problems can be solved with this method. The two reinforcement tasks we
suggest are such examples. In M - Munkagépek (Machines), distributing jobs between two machines
can be reformulated to a special coin change problem. In the M - Vásár (Sale) problem, we have to
maximize the profit of a merchant, and it can be reduced to a Knapsack problem.

The knowledge of DP is essential in some graph algorithms in our third unit. Two very common
shortest path algorithms, Bellman-Ford and Floyd-Warshall algorithms are two different DP solu-
tions to this problem. We can make use of this fact very well in our educational program, students
who have very solid grounds in DP can discover Bellman-Ford and Floyd-Warshall themselves.
To induce this, we can tell them to try finding the shortest paths with DP. If necessary, we can be
more specific: in the case of Bellman-Ford: do a DP on the number of edges in the path. Floyd-
Warshall is much trickier, the DP is done on the vertices inside the path. An excellent task that can
help with this discovery is CF - 295B. Greg and Graph. In our third unit problem set, there is another
task which is a great synthesis of DP, combinatorics, and directed acyclic graphs (DAG): HR -
Kingdom connectivity, in which you have to find the number of different ways to go between two
vertices of a directed graph.

NIKHÁZY László 93

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

4.4. Advanced problems

Since DP has so many applications, we keep on revisiting it with harder and harder tasks. It is not
easy to categorize them, so we took two representative problems to symbolize these modules.

To solve the Longest Common Subsequence problem, we create a 2D array, where each cell cor-
responds to the subproblem taking the first i and j elements of the two sequences. For sequences

A and B, the dynamic programming goes as follows:

DP[i,j] = max(DP[i-1,j], DP[i,j-1],

DP[i-1,j-1]+1 if A[i]=B[j])

DP[i,0] = 0, DP[0,j] = 0

(7)

We included various other exercises where we see this or a similar pattern. There is M - Jelek (Signs),
which is essentially the longest repeated substring problem that can be solved with DP in O(N2).
In M - Rúd felvágás (Stick cutting), we are looking for the cheapest way of cutting up a stick to pieces.
The solution to that problem is easier formulated with recursion, so it can be an example of mem-
oization. CF - 607B is about palindromic substrings and it requires a very good understanding of
the pattern where the subproblems are ranges in some sequence. Here we would like to point out
that previously we mentioned a problem, M - Fehér és fekete korongok, (White and Black Tokens), which
falls also into this category and we included it in GAME DP because there the subproblems are
states of a game, so it is a good precursor to this module.

The Longest Increasing Subsequence (LIS) problem can be developed very well and there are nu-
merous nice exercises on this topic. The O(N2) solution is a good first step, but here we want to
focus on reaching the O(N∙logN) solution combined with binary search. M - Konténeroszlopok (Con-
tainer Columns) is a greedy task that can be viewed as the dual problem of it: divide a sequence into
a minimal number of decreasing subsequences. In the greedy process, the ordered nature of sub-
sequence endings can be observed, and the binary search is straightforward. What is not straight-
forward is that we calculate the length of the LIS too, which gives a lower bound for the result.
This duality theorem also certifies that LIS is so beautiful that everyone should see. But we only
uncover it after solving a task which can be reduced to finding the LIS: you have to build a tower
using the maximum number of cubes, given some cubes with sizes and weights, and you can only
place a smaller and lighter cube on top of another, M - Kockákból legmagasabb torony (Highest Tower of
Cubes). Sorting by one property is the first idea, after that it comes down to computing the LIS.
There is a very hard task in this topic, CF - 650D. Zip-line, in which a firm understanding of the
above is necessary, but no advanced data structures.

We call Bitmask DP the method when the subproblems we solve correspond to all subsets of a
set. We usually represent a subset with a bit vector, that is usually stored in an integer. Transitions
in this form of DP generally involve adding or removing one element of the subset, which can be
done by bit manipulations, bitwise operators. An example problem would be M - Vásárlások (Pur-
chases), where we need to minimize the money spent on certain items, given their prices in different
shops, with the constraint that we buy at most one item in each shop. The states of the DP, in this
case, would be the K number of shops considered and the S subset of items bought so far. This

type of DP can be connected to the inclusion-exclusion principle in some problems, for example
CF - 102128B. Cake Tasting.

We applied DP with binary search, DP on ranges and DP on subsets with bit manipulations in the
modules above, and there are numerous other scenarios that we haven’t covered here. The topic
of DP is very deep, there can be extremely difficult problems which are “only” DP. In our fifth
unit, driven by data structures, we can see traces of DP in the construction step of many data
structures (e.g. RMQ Sparse Table, Binary Indexed Tree, LPS table in KMP), so dynamic program-
ming is a core concept throughout our curriculum. In this chapter, we gave an overview of it,
showing the possibility of developing deep knowledge over a long period and many exercises.

A Problem-based Curriculum for Algorithmic Programming 94

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

5. Conclusion

In this paper, we described a possible curriculum for computer programming talent education in
high schools. However, we consider it as work in progress, we will reflect on it and improve it
based on experiences from putting it to practice. The main goal of the author’s research is to create
a system for computer science talent education similar to the existing one in mathematics organized
by The Joy of Thinking foundation [7]. The curriculum was designed to respect the principles of
Lajos Pósa’s pedagogy in mathematics and is intended to form as a basis for our problem-based
learning methodology in algorithmic programming.

Bibliography

1. J. Győri, P. Juhász: An extra-curricular gifted support programme in Hungary for exceptional students in
mathematics. Teaching Gifted Learners in Stem Subjects. Routledge, London (2017) 89–106.
DOI: 10.4324/9781315697147-7

2. S. Halim: Competitive Programming 3. Lulu Independent Publish (2013)

3. Problemset, Codeforces. (2020) https://codeforces.com/problemset.

4. W. Van Joolingen: Cognitive tools for discovery learning. International Journal of Artificial Intelligence
in Education. Vol 10 (1999) 385–397.

5. A. F. Borthick, D. R. Jones: The motivation for collaborative discovery learning online and its application in
an information systems assurance course. Issues in Accounting Education, Vol. 15(2) (2000) 181–210.
DOI: 10.2308/iace.2000.15.2.181

6. S. L. Finkle, Ll. Torp: Introductory Documents. Illinois Math and Science Academy. (1995)

7. The Joy of Thinking Foundation, Hungary. http://agondolkodasorome.hu/.

8. J. A. Bibergall: Learning by discovery: Its relation to science teaching. Educational Review. Vol. 18(3)
(1966) 222–231. DOI: 10.1080/0013191660180307

9. D. Katona, G. Szűcs: Pósa-Method and Cubic-Geometry – A Sample of a Problem Thread for Discovery
Learning of Mathematics. Differences in Pedagogical Theory and Practice. (2017) DOI:
10.18427/iri-2017-0079

10. P. Juhász: Hungary: Search for Mathematical Talent. The De Morgan Journal. Vol 2(2) (2012) 47-52.

11. L. Pósa: Matematika táboraim. Természet Világa. Vol. 132, N
o
3.

http://www.termeszetvilaga.hu/tv2001/tv0103/posa.html

12. M. Forišek: IOI Syllabus. (2018) https://ioinformatics.org/files/ioi-syllabus-2018.pdf

13. A. Laaksonen: Competitive Programmer's Handbook. (2018) https://cses.fi/book/book.pdf

14. CP-Algorithms. https://cp-algorithms.com/

15. Geeks for Geeks. https://www.geeksforgeeks.org/

16. A. M. Dehghan: Algorithm Gym: Data Structures. Codeforces blog. (2015)
https://codeforces.com/blog/entry/15729

17. A. M. Dehghan Algorithm Gym: Graph Algorithms. Codeforces blog. (2015)
https://codeforces.com/blog/entry/16221

18. S. Király: How to teach computer programming if our goal is the International Olympiad in Informat-
ics. Teaching Mathematics and Computer Science. Vol. 9, no. 1 (2011) 13-25.

https://doi.org/10.4324/9781315697147-7
https://codeforces.com/problemset
https://doi.org/10.2308/iace.2000.15.2.181
http://agondolkodasorome.hu/
https://doi.org/10.1080/0013191660180307
http://doi.org/10.18427/iri-2017-0079
http://doi.org/10.18427/iri-2017-0079
http://www.termeszetvilaga.hu/tv2001/tv0103/posa.html
https://ioinformatics.org/files/ioi-syllabus-2018.pdf
https://cses.fi/book/book.pdf
https://cp-algorithms.com/
https://www.geeksforgeeks.org/
https://codeforces.com/blog/entry/15729
https://codeforces.com/blog/entry/16221

NIKHÁZY László 95

Central-European Journal of New Technologies in Research, Education and Practice
Volume 2, Number 1, 2020.

19. Á. Erdősné Németh: From LOGO Till Olympiads - Talent Management In Grammar School. Ph.D.
Dissertation, Eötvös Loránd University, Doctoral School of Informatics, Budapest (2019) (in
Hungarian). DOI: 10.15476/ELTE.2019.007

20. Á. Erdősné Németh, L. Zsakó: Grading Systems for Algorithmic Contests. Olympiads in Informatics.
Vol. 12 (2018) 159–166. DOI: 10.15388/ioi.2018.13

21. Á. Erdősné Németh, L. Zsakó: The Place of the Dynamic Programming Concept in the Progression of
Contestants’ Thinking. Olympiads in Informatics. Vol. 10 (2016) 61–72.
DOI: 10.15388/ioi.2016.04

22. M. Forišek: Towards a better way to teach dynamic programming. Olympiads in Informatics. Vol. 9
(2015) 45–55. DOI: 10.15388/ioi.2015.05

23. P. Szlávi, L. Zsakó: Methodical programming: Programming Theorems. Eötvös Loránd University, Fac-
ulty of Science, Department group of Informatics, Budapest (1996) (in Hungarian).

24. HackerRank. https://www.hackerrank.com/

25. CodeChef. https://www.codechef.com/

26. CS Academy. https://csacademy.com/

27. Sphere Online Judge. https://www.spoj.com/

28. UVa Online Judge. https://uva.onlinejudge.org/

29. PEG Online Judge. https://wcipeg.com/

30. Mester. http://mester.inf.elte.hu/

31. ICPC Live Archive. https://icpcarchive.ecs.baylor.edu/

32. Timus Online Judge. http://acm.timus.ru/

Authors About this document

NIKHÁZY László

Eötvös Loránd University, Faculty of Infor-
matics, Department of Media and Educational
Informatics, Budapest, Hungary, e-mail:
laszlo.nikhazy@gmail.com

Published in:

CENTRAL-EUROPEAN JOURNAL OF
NEW TECHNOLOGIES IN RESEARCH,
EDUCATION AND PRACTICE

Volume 2, Number 1. 2020.

ISSN: 2676-9425 (online)

DOI:

10.36427/CEJNTREP.2.1.399

License

Copyright © NIKHÁZY László, 2020.

Licensee CENTRAL-EUROPEAN JOURNAL OF NEW TECHNOLOGIES IN RESEARCH,
EDUCATION AND PRACTICE, Hungary. This article is an open access article distributed under
the terms and conditions of the Creative Commons Attribution (CC-BY) license.

http://creativecommons.org/licenses/by/4.0/

https://doi.org/10.15476/ELTE.2019.007
https://doi.org/10.15388/ioi.2018.13
https://doi.org/10.15388/ioi.2016.04
https://doi.org/10.15388/ioi.2015.05
https://www.hackerrank.com/
https://www.codechef.com/
https://csacademy.com/
https://www.spoj.com/
https://uva.onlinejudge.org/
https://wcipeg.com/
http://mester.inf.elte.hu/
https://icpcarchive.ecs.baylor.edu/
http://acm.timus.ru/
http://creativecommons.org/licenses/by/4.0/

